As landfill space for the disposal of products of municipal solid waste incineration (MSWI) such as fly ash and slag becomes increasingly scarce, a reduction of disposed material is urgently required. The method of using incineration products in concrete production is explored in this paper through a feasibility study of utilizing fly ash and slag to replace cement and coarse aggregate in appropriate proportions. Results show that C30 concrete optimum replacement rates of fly ash and slag are 30% and 20%, which can meet the minimum strength requirement. The leaching concentrations of Cu, Zn, Pb, Cr, and Cd in MSWI concrete samples are determined to be less than the identification value of solid waste leaching toxicity. Based on scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses, MSWI fly ash has certain dispersion. The particle size of MSWI fly ash is determined to be close to that of the coal fly ash, and the surface morphology is irregular. The main components include SiO2, CaCO3, and Ca2SiO4, and they are similar to those present in the coal fly ash. The slag structure is loose as well as irregular, and its main component is SiO2. The SiO2 and Al2O3 in fly ash and slag participate in the hydration reaction of cement and can increase concrete strength. It is thus confirmed that fly ash and slag generated by waste incineration can be used to replace cement and coarse aggregate in appropriate proportions, and it is an effective method to solve the problem of scarcity of solid waste landfill space.
In this work, to quantitatively analyze the roughness of the surfaces of road aggregates, the contact measurement technique and contactless scanning technique were, respectively, used to capture the coordinate data of point clouds on the aggregate surface, which were then used to reconstruct the digital elevation models of aggregate particles. Then, the joint roughness coefficient (JRC) was used as an evaluation index, and the quantitative calculation methods of the two-dimensional (2D) contour line roughness and three-dimensional (3D) contour surface roughness of aggregate particles were, respectively, studied. Finally, the anisotropic characteristics and size effect of the roughness coefficients of aggregates with different lithologies were, respectively, investigated, based on which the practicability of the 3D roughness coefficient index was proven. The results demonstrate that the roughness of a road aggregate surface can be quantitatively described by the point cloud data. The 2D roughness of aggregate profile lines exhibits anisotropy, while the 3D roughness of the aggregate contour surface indicates the size effect. The subtle morphological changes of the surface textures of aggregates can be accurately described by the 3D joint roughness coefficient (JRC3D) calculated by the feature parameter method.
The influence of the chemical composition of asphalt, the aggregate lithology, and the morphological characteristics of the aggregate on the level of adhesion between the asphalt and the aggregate is investigated. A contactless three-dimensional (3D) white-light scanning technique is used to obtain point cloud data of the aggregate particles. Six independent feature parameters are used as evaluation indices to quantitatively describe the multilevel features of the 3D morphology of road aggregates. Methods for analyzing the feature parameters based on the point cloud data of the aggregate are presented. Subsequently, the process and evaluation standard of the adhesion test are improved to quantify the spalling degree of the asphalt film on the aggregate surface under boiling conditions. The influences of the chemical composition of the asphalt and the aggregate morphology on the level of adhesion between the asphalt and aggregate are analyzed, and the compatibility between aggregates with different lithologies and the asphalt is assessed. The results show that the shape factor (SF) can be used to characterize the needle-flake shape of the particles, the ellipsoid index (E) is suitable to determine the angularity of the aggregate particles, and the 3D joint roughness coefficient (JRC3D) describes the roughness of the particle surface. The type of adhesion between the aggregate and the asphalt includes chemical and physical adsorption; chemical bonding is relatively strong, and the physical orientation force and mechanical interlocking force are relatively weak. Alkaline limestone aggregates should be used with asphalt with a high aggregate content of colloid and asphaltenes. Basalt aggregate with weak alkalinity should be used with asphalt with a high colloid content, and the use of angular aggregates should be avoided. Acidic aggregates with compact shapes, few edges and corners, and rough surfaces should be used prudently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.