The generalization performance is the main concern of machine learning theoretical research. The previous main bounds describing the generalization ability of the Empirical Risk Minimization (ERM) algorithm are based on independent and identically distributed (i.i.d.) samples. In order to study the generalization performance of the ERM algorithm with dependent observations, we first establish the exponential bound on the rate of relative uniform convergence of the ERM algorithm with exponentially strongly mixing observations, and then we obtain the generalization bounds and prove that the ERM algorithm with exponentially strongly mixing observations is consistent. The main results obtained in this paper not only extend the previously known results for i.i.d. observations to the case of exponentially strongly mixing observations, but also improve the previous results for strongly mixing samples. Because the ERM algorithm is usually very time-consuming and overfitting may happen when the complexity of the hypothesis space is high, as an application of our main results we also explore a new strategy to implement the ERM algorithm in high complexity hypothesis space.
The prevalence of epilepsy active within the last one and five years was higher in rural areas than in urban areas of Yueyang city. A large treatment gap exists in this area and a rational intervention strategy is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.