Renal interstitial fibrosis (RIF) is a crucial pathological change leading to chronic kidney disease (CKD). Currently, no effective medicines have been available for treating it. In our research, we examined the effects of polysaccharides extracted from Balanophora polyandra Griff (BPPs) on kidney fibrosis and epithelial to mesenchymal transition (EMT) in vivo and in vitro, aiming to explore the underlying mechanisms. By using the mice with unilateral urethral obstruction (UUO) as experimental subjects, we examined the medicinal values of BPPs on alleviating RIF. The effects of BPPs were evaluated by examining the histological staining and relative mRNA and protein expression levels of the related genes. The possible underlying mechanisms were further explored with human normal renal proximal tubular epithelia (HK‐2 cells) as in vitro model. In UUO mice, BPP treatment could significantly alleviate interstitial fibrosis through reducing the components (Collagens I, III and IV) of extracellular matrix (ECM), and reducing the activation of fibroblasts producing these components, as revealed by inhibiting the hallmarks (fibronectin and α‐SMA) of fibroblast activation. Furthermore, BPP administration increased the expression levels of matrix metalloproteinases (MMPs) and declined those of tissue inhibitors of metalloproteinases (TIMPs). BPPs markedly ameliorated EMT in both the kidneys of UUO mice and TGF‐β1 treated HK‐2 cells. Moreover, BPP treatment decreased the expression levels of several transcriptional factors involved in regulating E‐cadherin expression, including snail, twist and ZEB1. Additionally, the Hedgehog pathway was found to be closely correlated with renal fibrosis and EMT. Altogether, our results clearly demonstrated that BPP treatment effectively inhibited the Hedgehog pathway both in renal tissues of UUO mice and TGF‐β1‐treated HK‐2 cells. Thus, BPPs ameliorated RIF and EMT in vivo and in vitro via suppressing Hedgehog signalling pathway.
The most prevalent form of primary osseous malignant tumor in adolescents and children is osteosarcoma (OS). A combination of surgery and neoadjuvant/post-surgery chemotherapy is currently the standard therapy. While the chemoresistance associated with OS generally leads to poor e cacy of therapeutic agents, the relevant molecular interaction is still elusive. Here, the lncRNA (long non-coding RNA) SNHG14 was found to be signi cantly upregulated in the nutlin3a-resistant OS cell line NR-SJSA1 and contributes to treatment resistance by suppressing ferroptosis. In NR-SJSA1 cells, knockdown of LncRNA SNHG14 resulted in a reversal of drug resistance and activation of ferroptosis, which disappeared when ferrostatin-1, a ferroptosis inhibitor, was added. Mechanically, lncRNA SNHG14 targeted and down-regulated the expression of miR-206, further affecting the common ferroptosis inhibitor SLC7A11, and preventing NR-SJSA1 cells from undergoing ferroptosis. In conclusion, our ndings highlight the involvement of lncRNA SNHG14 in ferroptosis and chemotherapy resistance of nutlin3a-resistant NR-SJSA1 cells, thus shedding new insight on how to overcome drug resistance in osteosarcoma cells and improve treatment e cacy.
Background:
Nuclear‐enriched abundant transcript 1 (abbreviated as NEAT1) refers to a long-chain non-coding RNA involved within various physiological and pathological processes. This study aimed at clarifying the effect and molecule system of neat1 within nonalcoholic fatty liver disease (NAFLD) as well as type 2 diabetes (T2DM).
Method:
In this review, we summarize and analyze current studies concerning mechanisms of NEAT1 in the development of type 2 diabetes and its complications. Also, we search the papers of NEAT1 in applying to NAFLD. The related studies were obtained through a systematic search of Pubmed.
Results:
Neat1 displays a close correlation with how T2DM occurs and develops, and it was confirmed to be significantly up-regulated in T2DM and its various complications (e.g., diabetics nephropathy, diabetics cardiomyopathy, diabetics retinopathy as well as diabetic neuropathy). Besides, neat1 is capable of impacting the occurrence, development and prognosis of NAFLD and T2DM.
Conclusion:
LncRNA neat1 is likely to act as a novel therapeutic target for and T2DM and its complications. Moreover, nonalcoholic fatty liver disease is also correlated with NEAT1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.