BackgroundThe high level of excretion and rapid folding ability of β-fructofuranosidase (β-FFase) in Escherichia coli has suggested that β-FFase from Arthrobacter arilaitensis NJEM01 can be developed as a fusion partner.MethodsBased on the modified Wilkinson and Harrison algorithm and the preliminary verification of the solubility-enhancing ability of β-FFase truncations, three β-FFase truncations (i.e., Ffu209, Ffu217, and Ffu312) with a native signal peptide were selected as novel Ffu fusion tags. Four difficult-to-express protein models; i.e., CARDS TX, VEGFR-2, RVs and Omp85 were used in the assessment of Ffu fusion tags.ResultsThe expression levels and solubility of each protein were markedly enhanced by the Ffu fusion system. Each protein had a favorable Ffu tag. The Ffu fusion tags performed preferably when compared with the well-known fusion tags MBP and NusA. Strikingly, it was confirmed that Ffu fusion proteins were secreted into the periplasm by the periplasmic analysis and N-amino acid sequence analysis. Further, efficient excretion of HV3 with defined anti-thrombin activity was obtained when it was fused with the Ffu312 tag. Moreover, HV3 remained soluble and demonstrated notable anti-thrombin activity after the removal of the Ffu312 tag by enterokinase.ConclusionsObservations from this work not only complements fusion technologies, but also develops a novel and effective secretory system to solve key issues that include inclusion bodies and degradation when expressing heterologous proteins in E. coli, especially for proteins that require disulfide bond formation, eukaryotic-secreted proteins, and membrane-associated proteins.Electronic supplementary materialThe online version of this article (10.1186/s12934-017-0845-z) contains supplementary material, which is available to authorized users.
A rapid and convenient strategy to monitor the productivity of biomanufacturing is essential for the research in optimizing relevant bioprocesses. In this work, we have developed a fluorescein-derived probe (FL-DT) that reacts rapidly with thiol groups via 1,4-Michael addition reaction of the sulfhydryl to unsaturated ketone and releases fluorescence. FL-DT specifically forms fluorescent adduct with two adjacent thiols in a protein of interest (POI), making the probe a reliable tool for protein quantification.The production of xylanase fused with a short di-Cys tag was then successfully monitored and quantified with FL-DT in Escherichia coli system under different protein expression conditions, providing useful information for optimizing the bioprocess.Our work provides a convenient and efficient strategy for POI labeling and monitoring bioproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.