Highly permeable and selective, as well as plasticization-resistant membranes are desired as promising alternatives for cost- and energy-effective CO separation. Here, robust mixed-matrix membranes based on an amino-functionalized zeolitic imidazolate framework ZIF-7 (ZIF-7-NH ) and crosslinked poly(ethylene oxide) rubbery polymer are successfully fabricated with filler loadings up to 36 wt%. The ZIF-7-NH materials synthesized from in situ substitution of 2-aminobenzimidazole into the ZIF-7 structure exhibit enlarged aperture size compared with monoligand ZIF-7. The intrinsic separation ability for CO /CH on ZIF-7-NH is remarkably enhanced as a result of improved CO uptake capacity and diffusion selectivity. The incorporation of ZIF-7-NH fillers simultaneously makes the neat polymer more permeable and more selective, surpassing the state-of-the-art 2008 Robeson upper bound. The chelating effect between metal (zinc) nodes of fillers and ester groups of a polymer provides good bonding, enhancing the mechanical strength and plasticization resistance of the neat polymer membrane. The developed novel ZIF-7 structure with amino-function and the resulting nanocomposite membranes are very attractive for applications like natural-gas sweetening or biogas purification.
The polydimethylsiloxane (PDMS) coating penetrated into the underneath ZIF-8 polycrystalline membrane not only blocking the inter-crystalline defects but also hindering the flexibility of the ZIF-8 framework, resulting in an unusual and highly desired increase in the separation selectivity of the CH/CH mixture under high feeding pressures.
Continuous ZIF-67 polycrystalline membranes with effective propylene/propane separation performances were successfully fabricated through the incorporation of zinc ions into the ZIF-67 framework. The separation factor increases from 1.4 for the pure ZIF-67 membrane to 50.5 for the 90% zinc-substituted ZIF-67 membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.