The effects of cooling rate 0.15, 1.5, 15, 150, and 1.5 × 105 °C/s on the microstructures and mechanical properties of Al-13Si-4Cu-1Mg-2Ni cast piston alloy were investigated. The results show that with an increase of solidification cooling rate, the secondary dendrite arm spacing (SDAS) of this model alloy can be calculated using the formula D = 47.126v − 1/3. The phases formed during the solidification with lower cooling rates primarily consist of eutectic silicon, M-Mg2Si phase, γ-Al7Cu4Ni phase, δ-Al3CuNi phase, ε-Al3Ni phase, and Q-Al5Cu2Mg8Si6 phase. With the increase in the solidification cooling rate from 0.15 to 15 °C/s, the hardness increased from 80.9 to 125.7 HB, the room temperature tensile strength enhanced from 189.3 to 282.5 MPa, and the elongation at break increased from 1.6% to 2.8%. The ε -Al3Ni phase disappears in the alloy and the Q phase emerges. The δ phase and the γ phase change from large-sized meshes and clusters to smaller meshes and Chinese script patterns. Further increase in the cooling rate leads to the micro hardness increasing gradually from 131.2 to 195.6 HV and the alloy solidifying into a uniform structure and forming nanocrystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.