Tremendous demands for highly sensitive and selective nonenzymatic electrochemical biosensors have motivated intensive research on advanced electrode materials with high electrocatalytic activity. Herein, the 3D‐networked CuO@carbon nanowalls/diamond (C/D) architecture is rationally designed, and it demonstrates wide linear range (0.5 × 10−6–4 × 10−3 m), high sensitivity (1650 µA cm−2 mm−1), and low detection limit (0.5 × 10−6 m), together with high selectivity, great long‐term stability, and good reproducibility in glucose determination. The outstanding performance of the CuO@C/D electrode can be ascribed to the synergistic effect coming from high‐electrocatalytic‐activity CuO nanoparticles and 3D‐networked conductive C/D film. The C/D film is composed of carbon nanowalls and diamond nanoplatelets; and owing to the large surface area, accessible open surfaces, and high electrical conduction, it works as an excellent transducer, greatly accelerating the mass‐ and charge‐transport kinetics of electrocatalytic reaction on the CuO biorecognition element. Besides, the vertical aligned diamond nanoplatelet scaffolds could improve structural and mechanical stability of the designed electrode in long‐term performance. The excellent CuO@C/D electrode promises potential application in practical glucose detection, and the strategy proposed here can also be extended to construct other biorecognition elements on the 3D‐networked conductive C/D transducer for various high‐performance nonenzymatic electrochemical biosensors.
Stylo has a great potential for Al3+ resistance in acidic soils through secretion of citrate from the roots. To get insight into the molecular mechanisms responsible, transcriptomic changes were investigated in the roots after treatment with T01 (−Al3+, pH6.0), T02 (−Al3+, pH4.3) and T03 (50 µM AlCl3, pH4.3). In total, 83,197 unigenes generated from 130,933 contigs were obtained. Of them, 282, 148 and 816 differentially expressed unigenes (DEGs) were revealed in T01_vs_T02, T02_vs_T03 and T01_vs_T03 comparison, respectively (FDR < 0.001, log2FC > 2). DEGs by Al3+ were related to G-proteins, diacyglycerol and inositol metabolism, calcium-signaling, transcription regulation, protein modification and transporters for detoxification of Al3+. Additionally, Al3+ facilitates citrate synthesis via modifying gene expression of pathways responsible for citrate metabolism. Overall, Al3+ resistance in stylo involves multiple strategies and enhancement of citrate anabolism. The Al3+ signal transmits through heterotrimeric G-proteins, phospholipase C, inositol triphosphate, diacylglycerol, Ca2+ and protein kinases, thereby activating transcription and anion channels in plasma membrane, and resulting in citrate secretion from stylo roots.
(GaN)(ZnO) solid solution has attracted extensive attention due to its feasible band-gap tunability and excellent photocatalytic performance in overall water splitting. However, its potential application in the photodegradation of organic pollutants and environmental processing has rarely been reported. In this study, we developed a rapid synthesis process to fabricate porous (GaN)(ZnO) solid solution with a tunable band gap in the range of 2.38-2.76 eV for phenol photodegradation. Under visible-light irradiation, (GaN)(ZnO) solid solution achieved the highest photocatalytic performance compared to other (GaN)(ZnO) solid solutions with x = 0.45, 0.65 and 0.85 due to its higher redox capability and lower lattice deformation. Slight Ag decoration with a content of 1 wt% on the surface of the (GaN)(ZnO) solid solution leads to a significant enhancement in phenol degradation, with a reaction rate eight times faster than that of pristine (GaN)(ZnO). Interestingly, phenol in aqueous solution (10 mg L) can also be completely degraded within 60 min, even under the direct exposure of sunlight irradiation. The photocurrent response indicates that the enhanced photocatalytic activity of (GaN)(ZnO)/Ag is directly induced by the improved transfer efficiency of the photogenerated electrons at the interface. The excellent phenol degradation performance of (GaN)(ZnO)/Ag further broadens their promising photocatalytic utilization in environmental processing, besides in overall water splitting for hydrogen production.
Insulin resistance (IR) is the common basis of diabetes and cardiovascular diseases, and its development is closely associated with lipid metabolism disorder. Flavonoids have definite chemical defense effects, including anti-inflammatory effects, anti-cancer effects, and anti-mutation effects. However, the function and mechanism of apigenin (AP, a kind of flavonoids) on IR are still unclear. In our study, intracellular fat accumulation model cells and high-fat diet (HFD) fed model mice were established using palmitate (PA) and HFD. Mechanistically, we first demonstrated that AP could notably downregulate sterol regulatory element-binding protein 1c (SREBP-1c), sterol regulatory element-binding protein 2 (SREBP-2), fatty acid synthase (FAS), stearyl-CoA desaturase 1 (SCD-1), and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCOR) in PA-induced hyperlipidemic cells and mice. Functionally, we verified that AP could markedly reduce lipid accumulation in PA-induced hyperlipidemic cells and decrease the body weight, visceral fat weight, IR, and lipid accumulation in HFD-induced hyperlipidemic mice. Besides, we disclosed that PA could significantly downregulate endoplasmic reticulum stress (ERS)-related proteins and inhibit ERS. Furthermore, we proved that AP could reduce blood lipids by inhibiting ERS in PA-induced hyperlipidemic cells. Meanwhile, 4-phenyl butyric acid (4-PBA) (4-PBA, also ERS alleviator), like AP, could significantly reduce blood lipids and alleviate IR inHFD-fed model mice. Therefore, we concluded that AP could substantially improve the disorder of lipid metabolism, and its mechanism might be related to the decrease of SREBP-1c, SREBP-2, and downstream genes, the inhibition of ERS, and the reduction of blood lipids and IR. Significance statementApigenin, a non-toxic and naturally-sourced flavonoid, exerts anti-hyperlipidemic properties in mice and hepatocyte. Our study highlights a new mechanism of apigenin This article has not been copyedited and formatted. The final version may differ from this version.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.