The adhesion receptor CD96 (TACTILE) is a transmembrane glycoprotein possessing three extracellular immunoglobulinlike domains. Among peripheral blood cells, CD96 is expressed on T cells as well as NK cells and a subpopulation of B cells. A possible function of this receptor in NK cell-mediated killing activities was suggested recently. Moreover, CD96 was described as a tumor marker for T-cell acute lymphoblastic leukemia and acute myeloid leukemia. CD96 binds to CD155 (poliovirus receptor) and nectin-1, an adhesion receptor related to CD155. Here we report that human but not mouse CD96 is expressed in two splice variants possessing either an I-like (variant 1) or V-like (variant 2) second domain. With the notable exception of an AML tumor sample, variant 2 predominates in all the CD96-expressing cell types and tissues examined. Using chimeric human/murine CD96 receptors, we show that the interaction with its ligands is mediated via the outermost V-like domain. In contrast to mouse, however, the binding of human CD96 to CD155 is sensitive to the characteristics of the two downstream domains. This is illustrated by a significantly weaker CD96/CD155 interaction mediated by variant 1 when compared with variant 2. Moreover, recent evidence suggested that mutations in human CD96 correlate with the occurrence of a rare form of trigonocephaly. One such mutation causing a single amino acid exchange in the third domain of human CD96 decreased the capacity of both variants to bind to CD155 considerably, suggesting that a CD96-driven adhesion to CD155 may be crucial in developmental processes.
Small caliber vascular grafts represent a challenge to material scientists. In contrast to large caliber grafts, prostheses with diameter <6 mm, lead to increased hemodynamic disturbances and thrombogenic complications. Thus, endothelialization of small caliber grafts should create a compatible interface for hemodynamic processes. The purpose of our study was to compare different compositions of electrospun scaffolds with conventional ePTFE grafts with an inner diameter of 4 mm as well as different pre-coatings to create an optimized physiological interface for endothelialization. Polycaprolactone, polylactide, and polyethylenglycol (PCL/PLA and PCL/PLA/PEG) electrospun grafts and ePTFE grafts were pre-coated with blood, gelatine or fibronectin and seeded with endothelial cells from the human term placenta. Best results were obtained with fibronectin-coated PCL/PLA/PEG grafts. Here, the number of attached viable cells was 78-81% higher than on fibronectin pre-treated ePTFE grafts. Cells attached to PCL/PLA/PEG grafts appeared in physiological cobblestone morphology. Viability analysis showed a high cell viability of more than 98%. Fibronectin-coated PCL/PLA/PEG grafts may be a promising improvement to conventionally used ePTFE grafts.
We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.
The expression and physiology of purine receptors of the human blood-brain barrier endothelial cells were characterised by application of molecular biological, gene-silencing and Ca(2+)-imaging techniques to hCMEC/D3 cells. Reverse transcription polymerase chain reaction showed the expression of the G-protein-coupled receptors P2Y(2)-, P2Y(6)-, P2Y(11)- as well as the ionotropic P2X(4)-, P2X(5)- and P2X(7)-receptors. Fura-2 ratiometry revealed that adenosine triphosphate (ATP) or uridine triphosphate (UTP) mediated a change in the intracellular Ca(2+) concentration ([Ca(2+)](i)) from 150 to 300 nM in single cells. The change in [Ca(2+)](i) corresponded to a fourfold to fivefold increase in the fluorescence intensity of Fluo-4, which was used for high-throughput experiments. Pharmacological dissection using different agonists [UTPγS, ATPγS, uridine diphosphate (UDP), adenosine diphosphate (ADP), BzATP, αβ-meATP] and antagonist (MRS2578 or NF340) as well as inhibitors of intracellular mediators (U73122 and 2-APB) showed a PLC-IP(3) cascade-mediated Ca(2+) release, indicating that the nucleotide-induced Ca(2+) signal was mainly related to P2Y(2, 6 and 11) receptors. The gene silencing of the P2Y(2) receptor reduced the ATP- or UTP-induced Ca(2+) signal and suppressed the Ca(2+) signal mediated by P2Y(6) and P2Y(11) more specific agonists like UDP (P2Y(6)), BzATP (P2Y(11)) and ATPγS (P2Y(11)). This report identifies the P2Y(2) receptor subtype as the main purine receptor involved in Ca(2+) signalling of the hCMEC/D3 cells.
The rat aortic smooth muscle cell line A-10 was used to investigate the effect of dipyridamole on the gap junction coupling of smooth muscle cells. The scrape loading/dye transfer (SL/DT) technique revealed that dipyridamole concentrations between 5 μM and 100 μM significantly increased gap junction coupling. The adenosine receptor antagonist MRS 1754, as well as the PKA inhibitors Rp-cAMPS and H-89 were able to inhibit the dipyridamole-related increase in coupling, while forskolin and Br-cAMP also induced an enhancement of the gap junction coupling. Regarding the time-dependent behaviour of dipyridamole, a short-term effect characterised by an oscillatory reaction was observed for application times of less than 5 h, while applications times of at least 6 h resulted in a long-term effect, characterised by a constant increase of gap junction coupling to its maximum levels. This increase was not altered by prolonged presence of dipyridamole. In parallel, a short application of dipyridamole for at least 15 min was found to be sufficient to evoke the long-term effect measured 6 h after drug washout. We propose that in both the short-term and long-term effect, cAMP-related pathways are activated. The short-term phase could be related to an oscillatory cAMP effect, which might directly affect connexin trafficking, assembly and/or gap junction gating. The long-term effect is most likely related to the new expression and synthesis of connexins. With previous data from a bovine aortic endothelial cell line, the present results show that gap junction coupling of vascular cells is a target for dipyridamole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.