The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose HEPOS, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with HEPOS, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GOVREPORT, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors.tokens with a batch size of 1, 70GB of memory is needed for encoder attentions, and 8GB for encoder-decoder attentions.2 Our code is released at https://github.com/ luyang-huang96/LongDocSum.3 GOVREPORT can be downloaded from https:// gov-report-data.github.io.
Sequence-to-sequence models for abstractive summarization have been studied extensively, yet the generated summaries commonly suffer from fabricated content, and are often found to be near-extractive. We argue that, to address these issues, the summarizer should acquire semantic interpretation over input, e.g., via structured representation, to allow the generation of more informative summaries. In this paper, we present ASGARD, a novel framework for Abstractive Summarization with Graph-Augmentation and semantic-driven RewarD. We propose the use of dual encoders-a sequential document encoder and a graphstructured encoder-to maintain the global context and local characteristics of entities, complementing each other. We further design a reward based on a multiple choice cloze test to drive the model to better capture entity interactions. Results show that our models produce significantly higher ROUGE scores than a variant without knowledge graph as input on both New York Times and CNN/Daily Mail datasets. We also obtain better or comparable performance compared to systems that are finetuned from large pretrained language models. Human judges further rate our model outputs as more informative and containing fewer unfaithful errors.
Abstractive summarization systems aim to produce more coherent and concise summaries than their extractive counterparts. Popular neural models have achieved impressive results for single-document summarization, yet their outputs are often incoherent and unfaithful to the input. In this paper, we introduce SENECA, a novel System for ENtity-drivEn Coherent Abstractive summarization framework that leverages entity information to generate informative and coherent abstracts. Our framework takes a two-step approach:(1) an entity-aware content selection module first identifies salient sentences from the input, then (2) an abstract generation module conducts cross-sentence information compression and abstraction to generate the final summary, which is trained with rewards to promote coherence, conciseness, and clarity. The two components are further connected using reinforcement learning. Automatic evaluation shows that our model significantly outperforms previous state-of-the-art on ROUGE and our proposed coherence measures on New York Times and CNN/Daily Mail datasets. Human judges further rate our system summaries as more informative and coherent than those by popular summarization models. 1 Our code is available at evasharma.github.io/SENECA. Political analysts … On Sunday, he said … Mr. Ahern and his … Extracted Sentences Abstract Generator Figure 2: Our proposed entity-driven abstractive summarization framework. Entity-aware content selector extracts salient sentences and abstract generator produces informative and coherent summaries. Both components are connected using reinforcement learning.
The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose HEPOS, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with HEPOS, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GOVREPORT, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors.tokens with a batch size of 1, 70GB of memory is needed for encoder attentions, and 8GB for encoder-decoder attentions.2 Our code is released at https://github.com/ luyang-huang96/LongDocSum.3 GOVREPORT can be downloaded from https:// gov-report-data.github.io.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.