Summary
Soil aggregates, with complex spatial and nutritional heterogeneity, are clearly important for regulating microbial community ecology and biogeochemistry in soils. However, how the taxonomic composition and functional attributes of N‐cycling‐microbes within different soil particle‐size fractions under a long‐term fertilization treatment remains largely unknown. Here, we examined the composition and metabolic potential for urease activity, nitrification, N2O production and reduction of the microbial communities attached to different sized soil particles (2000–250, 250–53 and <53 μm) using a functional gene microarray (GeoChip) and functional assays. We found that urease activity and nitrification were higher in <53 μm fractions, whereas N2O production and reduction rates were greater in 2000–250 and 250–53 μm across different fertilizer regimes. The abundance of key N‐cycling genes involved in anammox, ammonification, assimilatory and dissimilatory N reduction, denitrification, nitrification and N2‐fixation detected by GeoChip increased as soil aggregate size decreased; and the particular key genes abundance (e.g., ureC, amoA, narG, nirS/K) and their corresponding activity were uncoupled. Aggregate fraction exerted significant impacts on N‐cycling microbial taxonomic composition, which was significantly shaped by soil nutrition. Taken together, these findings indicate the important roles of soil aggregates in differentiating N‐cycling metabolic potential and taxonomic composition, and provide empirical evidence that nitrogen metabolism potential and community are uncoupled due to aggregate heterogeneity.
Additive manufacturing of bulk metallic glasses (BMGs) has opened this material class to an exciting new range of potential applications, as bulk-scale, net-shaped amorphous components can be fabricated in a single step. However, there exists a critical need to understand the structural details of additive manufactured BMGs and how the glassy structure is linked to the mechanical properties. Here, we present a study of structure and property variations along the build height for a laser powder bed fusion (LPBF) processed Zr-based BMG with composition Zr59.3Cu28.8Nb1.5Al10.4 commercially termed AMZ4, using hardness testing, calorimetry, positron annihilation spectroscopy, synchrotron X-ray diffraction, and transmission electron microscopy. A lower hardness, more rejuvenated glassy structure was found at the bottom of the build compared to the middle region of the build, with the structure and properties of the top region between the two. Such differences could not be attributed to variability in chemical composition or crystallisation; rather, the softer bottom region was found to have a larger medium range order cluster size, attributed to heat dissipation into the build plate during processing, which gave faster cooling rates and less reheating compared to the steady-state middle of the build. However, at the top of the build less reheating occurs compared to the middle, leading to a somewhat softer and less relaxed state.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.