BackgroundThe uteruses of most dairy cattle are easily infected by bacteria, especially gram-negative bacteria, following parturition. Macrophages are important cells of the immune system and play a critical role in the inflammatory response. In addition, cortisol levels become significantly increased due to the stress of parturition in dairy cattle, and cortisol is among the most widely used and effective therapies for many inflammatory diseases. In this study, we assessed the anti-inflammatory effects and potential molecular mechanisms of cortisol using a Lipopolysaccharide (LPS)-induced RAW264.7 macrophage cell line.ResultsCortisol significantly suppressed the production of prostaglandin E2 (PGE2) and decreased the gene and protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Moreover, cortisol inhibited the mRNA expression of pro-inflammatory cytokines including tumor necrosis factor alpha (TNFα), interleukin-1β (IL-1β), and interleukin-6 (IL-6) and decreased IL-1β secretion in an LPS-treated RAW264.7 macrophage cell line. Moreover, we found that cortisol suppressed nuclear factor-kappa B (NF-κB) signaling in RAW264.7 macrophages stimulated with LPS. This suppression was mediated by the inhibition of IκBα degradation and NF-κB p65 phosphorylation. In addition, cortisol also suppressed the phosphorylation of mitogen-activated protein kinases (MAPK) such as extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase/stress-activated protein kinase (JNK).ConclusionsThese results suggest that high cortisol levels can attenuate LPS-induced inflammatory responses in the RAW264.7 macrophage cell line by regulating the NF-κB and MAPK signaling pathways.
Acupuncture tolerance is the gradual decrease in analgesic effect due to its prolonged application. However, its mechanism in terms of miRNA is still unknown. To explore the role of miRNAs in electroacupuncture (EA) tolerance of rats using deep sequencing, rats with more than a 50 % increase in tail flick latency (TFL) in response to EA were selected for this experiment. EA tolerance was induced by EA once daily for eight consecutive days. The hypothalami were harvested for deep sequencing. As a result, 49 differentially expressed miRNAs were identified and validated by real-time PCR. Of them, let-7b-5p, miR-148a-3p, miR-124-3p, miR-107-3p, and miR-370-3p were further confirmed to be related to EA tolerance by an intracerebroventricular injection of agomirs or antagomirs of these miRNAs. Potential targets of the 49 miRNAs were enriched in 9 pathways and 282 gene ontology (GO) terms. Five miRNAs were confirmed to participate in EA tolerance probably through the functional categories related to nerve impulse transmission, receptor signal pathways, and gene expression regulation, as well as pathways related to MAPK, neurotrophin, fatty acid metabolism, lysosome, and the degradation of valine, leucine, and isoleucine. Our findings reveal a characterized panel of the differentially expressed miRNAs in the hypothalamus in response to EA and thus provide a solid experimental framework for future analysis of the mechanisms underlying EA-induced tolerance.
Studies have demonstrated that obesity and osteoporosis are linked disorders in humans. This study examined the hypothesis that excessive lipid consumption affects bone metabolism in laying hens. A total of one hundred 63-wk-old laying hens were randomly divided into 2 treatments and fed either a regular layer diet (control) or a high energy and low protein diet (HE-LP; experimental treatment) for 80 d. Egg production, feed intake, and BW were recorded at various days during the treatment. At d 80, ten randomly chosen birds per treatment group were killed. Abdominal fat weight, liver weight, and liver fat content were determined. Serum levels of total calcium, inorganic phosphate, and alkaline phosphatase were measured using a biochemical analyzer. Serum concentrations of osteocalcin, leptin-like protein, and estrogen were measured by enzyme-linked immunosorbent assay. Tibia length and width were measured using a vernier caliper; density of the right tibias was determined using an x-ray scanner; and mechanical properties of the left tibias were analyzed using a material testing machine. The expression of osteocalcin and osteoprotegerin mRNA in the keel bone was analyzed by real-time PCR. The concentration of osteocalcin protein in the keels was measured using western blot. Compared with control hens, hens fed the HE-LP diet had lower egg production, lower feed intake, greater liver fat content, and greater abdominal fat pad mass (P < 0.05). Feeding the HE-LP diet increased serum alkaline phosphatase activity, osteocalcin, leptin-like protein, and estrogen concentrations (P < 0.05), and decreased the keel osteocalcin concentrations (P < 0.05). There were significant positive correlations between the serum concentrations of leptin-like protein, estrogen, and osteocalcin regardless of treatment (P < 0.05). The results indicated that HE-LP diet induced a fatty liver disorder in laying hens with an upregulation in bone turnover and exacerbated skeletal damage. The data supported a role for lipid metabolism in skeletal heath of laying hens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.