Background The Mesoamerican dominion is a biogeographic area of great interest due to its complex topography and distinctive climatic history. This area has a large diversity of habitats, including tropical deciduous forests, which house a large number of endemic species. Here, we assess phylogeographic pattern, genetic and morphometric variation in the Cinnamon Hummingbird complex Amazilia rutila, which prefers habitats in this region. This resident species is distributed along the Pacific coast from Sinaloa—including the Tres Marías Islands in Mexico to Costa Rica, and from the coastal plain of the Yucatán Peninsula of Mexico south to Belize. Methods We obtained genetic data from 85 samples of A. rutila, using 4 different molecular markers (mtDNA: ND2, COI; nDNA: ODC, MUSK) on which we performed analyses of population structure (median-joining network, STRUCTURE, FST, AMOVA), Bayesian and Maximum Likelihood phylogenetic analyses, and divergence time estimates. In order to evaluate the historic suitability of environmental conditions, we constructed projection models using past scenarios (Pleistocene periods), and conducted Bayesian Skyline Plots (BSP) to visualize changes in population sizes over time. To analyze morphometric variation, we took measurements of 5 morphological traits from 210 study skins. We tested for differences between sexes, differences among geographic groups (defined based on genetic results), and used PCA to examine the variation in multivariate space. Results Using mtDNA, we recovered four main geographic groups: the Pacific coast, the Tres Marías Islands, the Chiapas region, and the Yucatán Peninsula together with Central America. These same groups were recovered by the phylogenetic results based on the multilocus dataset. Demography based on BSP results showed constant population size over time throughout the A. rutila complex and within each geographic group. Ecological niche model projections onto past scenarios revealed no drastic changes in suitable conditions, but revealed some possible refuges. Morphometric results showed minor sexual dimorphism in this species and statistically significant differences between geographic groups. The Tres Marías Islands population was the most differentiated, having larger body size than the remaining groups. Conclusions The best supported evolutionary hypothesis of diversification within this group corresponds to geographic isolation (limited gene flow), differences in current environmental conditions, and historical habitat fragmentation promoted by past events (Pleistocene refugia). Four well-defined clades comprise the A. rutila complex, and we assess the importance of a taxonomic reevaluation. Our data suggest that both of A. r. graysoni (Tres Marías Islands) and A. r. rutila (Pacific coast) should be considered full species. The other two strongly supported clades are: (a) the Chiapas group (southern Mexico), and (b) the populations from Yucatán Peninsula and Central America. These clades belong to the corallirostris taxon, which needs to be split and properly named.
Cloud forests are one of the most endangered ecosystems in the Americas, as well as one of the richest in biological diversity in the world. The species inhabiting these forests are susceptible to environmental changes and characterized by high levels of geographic structure. The Garnet-Throated Hummingbird, Lamprolaima rhami, mainly inhabits cloud forests, but can also be found in other habitats. This species has a highly restricted distribution in Mesoamerica, and five disjunct regions have been delimited within the current geographic distribution of the species from Mexico to Honduras. According to variation in size and color, three subspecies have been described: L. r. rhami restricted to the Mexican highlands and Guatemala, L. r. occidentalis distributed in Guerrero (Mexico), and L. r. saturatior, distributed in the highlands from Honduras and El Salvador. We analyzed the levels of geographic structure in L. rhami and its taxonomic implications. We used mitochondrial and nuclear DNA to analyze genetic variation, demographic history, divergence times, reconstructed a multilocus phylogeny, and performed a species delimitation analyses. We also evaluated morphological variation in 208 specimens. We found high levels of genetic differentiation in three groups, and significant variation in morphological traits corresponding with the disjunct geographic populations. L. rhami presents population stability with the highest genetic variation explained by differences between populations. Divergence time estimates suggest that L. rhami split from its sister group around 10.55 million years ago, and the diversification of the complex was dated ca. 0.207 Mya. The hypotheses tested in the species delimitation analyses validated three independent lineages corresponding to three disjunct populations. This study provides evidence of genetic and/or morphometric differentiation between populations in the L. rhami complex where four separate evolutionary lineages are supported: (1) populations from the Sierra Madre Oriental and the highlands of Oaxaca (rhami), (2) populations from the highlands of Guerrero (occidentalis), (3) populations from the highlands of Chiapas and Guatemala (this is a non-previously proposed potential taxon: tacanensis), and (4) populations from the highlands of Honduras and El Salvador (saturatior). The main promoters of the geographic structure found in the L. rhami complex are likely the Isthmus of Tehuantepec as a geographic barrier, isolation by distance resulting from habitat fragmentation, and climatic conditions during the Pleistocene.
Genetic variation and phylogeographic studies have been crucial for understanding mechanisms of speciation. We analyzed genetic variation and phylogeography to reconstruct the demographic history of the Rivoli’s Hummingbird (Eugenes fulgens) species complex and also evaluated their morphological differentiation. This widely distributed species inhabits the highlands of Mexico and northern Central America, with 2 subspecies separated by the Isthmus of Tehuantepec (west: E. f. fulgens, east: E. f. viridiceps). We surveyed genetic variation in 2 mitochondrial DNA markers (mtDNA, with 129 individuals) and nuclear DNA (6 microsatellites, with 85 individuals). We also inferred the demographic history, estimated divergence times, and analyzed morphological variation using 470 vouchered specimens. We modeled the current potential distribution of the species using ecological niche modeling and projected it into the past to model the effects of the Pleistocene climatic cycles. Haplotype networks, pairwise FST comparisons, AMOVA, and morphological analysis revealed differences between geographically isolated populations separated by the Isthmus of Tehuantepec (IT; corresponding to the 2 recognized subspecies: fulgens and viridiceps), and by the Motagua-Polochic-Jocotán (MPJ) system fault. Demographic scenarios revealed a contraction in distribution during the last interglacial, and expansion during the Last Glacial Maximum (LGM) with little change since the LGM. Divergence between groups separated by the Isthmus of Tehuantepec ~59,600 yr ago occurred in the presence of gene flow, suggesting that the Isthmus of Tehuantepec is a semipermeable barrier to gene flow. STRUCTURE analyses of microsatellite data detected 3 genetically differentiated groups. Several results fit a model of recent lineage divergence, including a significant signal of genetic differentiation, demographic expansion, decreased gene flow from past to present, and northward expansion during the LGM and contraction during the interglacial periods. We conclude that the genetic differentiation of E. fulgens in the Madrean Pine-Oak Woodlands resulted from recent geographical isolation of populations separated by natural barriers (IT and MPJ).
The Pleistocene glacial cycles had a strong influence on the demography and genetic structure of many species, particularly on northern-latitude taxa. Here we studied the phylogeography of the white-eared hummingbird (Hylocharis leucotis), a widely distributed species of the highlands of Mexico and Central America. Analysis of mitochondrial DNA (mtDNA) sequences was combined with ecological niche modelling (ENM) to infer the demographic and population differentiation scenarios under present and past conditions. Analyses of 108 samples from 11 geographic locations revealed population structure and genetic differentiation among populations separated by the Isthmus of Tehuantepec (IT) and the Motagua-Polochic-Jocotán (MPJ) fault barriers. ENM predicted a widespread distribution of suitable habitat for H. leucotis since the Last Inter Glacial (LIG), but this habitat noticeably contracted and fragmented at the IT. Models for historical dispersal corridors based on population genetics data and ENM revealed the existence of corridors among populations west of the IT; however, the connectivity of populations across the IT has changed little since the LIG. The shallow geographic structure on either side of the isthmus and a star-like haplotype network, combined with the long-term persistence of populations across time based on genetic data and potential dispersal routes, support a scenario of divergence with migration and subsequent isolation and differentiation in Chiapas and south of the MPJ fault. Our findings corroborate the profound effects of Pleistocene climatic fluctuations on the evolutionary history of montane taxa but challenge the generality of expanded suitable habitat (pine-oak forests) during glacial cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.