In a murine model of experimental Trypanosoma cruzi (H8 strain) infection, we investigated the induction of protective immunity against the domains [amino (A), repeats (R) and carboxyl (C)] of the surface protein (SP), a member of the trans-sialidase (TS) superfamily. Recombinant proteins and plasmid DNA coding for the respective proteins were used to immunize BALB/c mice, and the humoral response and cytokine levels were analysed. Immunization with the recombinant proteins induced higher levels of anti-TcSP antibodies than immunization with the corresponding DNAs, and analysis of serum cytokines showed that immunization with both recombinant proteins and naked DNA resulted in a Th1-Th2 mixed T-cell response. Mice immunized with either recombinant proteins or plasmid DNA were infected with blood trypomastigotes. The recombinant protein-immunized mice showed a variable reduction in peak parasitemia, and most died by day 60. Only the pBKTcSPR-immunized mice exhibited a significant reduction in peak parasitemia and survived the lethal challenge. DNA-based immunization with DNA coding for the repeats domain of TcSP is a good candidate for the development of a vaccine against experimental T. cruzi infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.