Time-temperature-precipitation (TTP) diagrams deliver important material data, such as temperature and time ranges critical for precipitation during the quenching step of the age hardening procedure. Although the quenching step is continuous, isothermal TTP diagrams are often applied. Together with a so-called Quench Factor Analysis, they can be used to describe very different cooling paths. Typically, these diagrams are constructed based on mechanical properties or microstructures after an interrupted quenching, i.e., ex situ analyses. In recent years, an in situ calorimetric method to record continuous cooling precipitation diagrams of aluminum alloys has been developed to the application level by our group. This method has now been transferred to isothermal experiments, in which the whole heat treatment cycle was performed in a differential scanning calorimeter. The Al-Mg-Si-wrought alloy 6005A was investigated. Solution annealing at 540 °C and overcritical quenching to several temperatures between 450 °C and 250 °C were followed by isothermal soaking. Based on the heat flow curves during isothermal soaking, TTP diagrams were determined. An appropriate evaluation method has been developed. It was found that three different precipitation reactions in characteristic temperature intervals exist. Some of the low temperature reactions are not accessible in continuous cooling experiments and require isothermal studies.
Isothermal time-temperature-precipitation (TTP) diagrams deliver important material data like temperature and time ranges critical for precipitation. During the last years an in-situ calorimetric method to record continuous cooling precipitation diagrams has been developed to application level by our group. However, isothermal TTP-diagrams were still determined by ex-situ analyses only. In this work in-situ measurements of precipitation reactions were carried out during isothermal soaking. Therefore the whole heat treatment cycle was performed in a differential scanning calorimeter (DSC). Al-Mg-Si-alloys 6063 and 6005A were analysed. Solution annealing and overcritical quenching to several temperatures between 450 °C and 250 °C was followed by isothermal soaking. Based on the heat flow curves during isothermal soaking TTP-diagrams were determined. Further microstructure investigations by scanning electron microscopy and hardness tests after artificial ageing were performed. Both alloys show similar results. In the TTP-diagramms three so-called ”C-curves” could be observed. Every C-curve is expected to represent precipitation of a different phase. Hardness and microstructure investigations correspond with the data of the TTP-diagramms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.