In this study, the feasibility of co-grinding and the subsequent thermal rounding to produce spherical polymer blend particles for selective laser sintering (SLS) is demonstrated for polybutylene terephthalate (PBT) and polycarbonate (PC). The polymers are jointly comminuted in a planetary ball mill, and the obtained product particles are rounded in a heated downer reactor. The size distribution of PBT–PC composite particles is characterized with laser diffraction particle sizing, while the shape and morphology are investigated via scanning electron microscopy (SEM). A thorough investigation and characterization of the polymer intermixing in single particles is achieved via staining techniques and Raman microscopy. Furthermore, polarized light microscopy on thin film cuts enables the visualization of polymer mixing inside the particles. Trans-esterification between PBT and PC during the process steps is investigated via vibrational spectroscopy and differential scanning calorimetry (DSC). In this way, a new process route for the production of novel polymer blend particle systems for SLS is developed and carefully analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.