Human respiratory syncytial virus (RSV) is an important cause of severe lower respiratory tract infections in infants and the elderly. In the vast majority of cases, however, RSV infections run mild and symptoms resemble those of a common cold. The immunological, clinical, and epidemiological profile of severe RSV infections suggests a disease caused by a virus with typical seasonal transmission behavior, lacking clear-cut virulence factors, but instead causing disease by modifying the host’s immune response in a way that stimulates pathogenesis. Yet, the interplay between RSV-evoked immune responses and epidemic behavior, and how this affects the genomic evolutionary dynamics of the virus, remains poorly understood. Here, we present a comprehensive collection of 33 novel RSV subgroup A genomes from strains sampled over the last decade, and provide the first measurement of RSV-A genomic diversity through time in a phylodynamic framework. In addition, we map amino acid substitutions per protein to determine mutational hotspots in specific domains. Using Bayesian genealogical inference, we estimated the genomic evolutionary rate to be 6.47×10−4 (credible interval: 5.56×10−4, 7.38×10−4) substitutions/site/year, considerably slower than previous estimates based on G gene sequences only. The G gene is however marked by elevated substitution rates compared to other RSV genes, which can be attributed to relaxed selective constraints. In line with this, site-specific selection analyses identify the G gene as the major target of diversifying selection. Importantly, statistical analysis demonstrates that the immune driven positive selection does not leave a measurable imprint on the genome phylogeny, implying that RSV lineage replacement mainly follows nonselective epidemiological processes. The roughly 50 years of RSV-A genomic evolution are characterized by a constant population size through time and general co-circulation of lineages over many epidemic seasons – a conclusion that might be taken into account when developing future therapeutic and preventive strategies.
Genomic variation and related evolutionary dynamics of human respiratory syncytial virus (RSV), a common causative agent of severe lower respiratory tract infections, may affect its transmission behavior. RSV evolutionary patterns are likely to be influenced by a precarious interplay between selection favoring variants with higher replicative fitness and variants that evade host immune responses. Studying RSV genetic variation can reveal both the genes and the individual codons within these genes that are most crucial for RSV survival. In this study, we conducted genetic diversity and evolutionary rate analyses on 36 RSV subgroup B (RSV-B) whole-genome sequences. The attachment protein, G, was the most variable protein; accordingly, the G gene had a higher substitution rate than other RSV-B genes. Overall, less genetic variability was found among the available RSV-B genome sequences than among RSV-A genome sequences in a comparable sample. The mean substitution rates of the two subgroups were, however, similar (
Toll-like receptors (TLRs) play a distinct role in battling respiratory syncytial virus (RSV) infections. However, due to a lack of representative animal models and several early controversies, the field is unclear. In this systematic review, we have elucidated conflicting results and outlined important factors that might affect study outcomes. We reviewed studies that used different doses/viral strains, performed virus propagation in different cell lines, or used different mice strains. The following firm conclusions can be drawn: multiple TLRs activate innate immunity upon RSV infection; TLR4 can influence TLR2 expression, suggesting that optimal induction of multiple signaling pathways is required to elicit protective, rather than deleterious innate immune responses following infection; in mice, TLR4, TLR2/-6, and TLR7 have immune-stimulating properties, while TLR3 activation occurs later and appears to downregulate immune responses; in humans, polymorphism studies have demonstrated an important role for TLR4-signaling; and activation of TLR-signaling leads to antiviral cytokine production, such as TNF-a and IFNs. Viral factors may block these pathways, thereby contributing to immune evasion and RSV survival. A better understanding of the complex interplay between TLRs and severe RSV infections might lead to efficient prophylactic and therapeutic treatments, as well as the development of adequate vaccines combined with TLR adjuvants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.