SeptiCyte LAB appears to be a promising diagnostic tool to complement physician assessment of infection likelihood in critically ill adult patients with systemic inflammation. Clinical trial registered with www.clinicaltrials.gov (NCT01905033 and NCT02127502).
Encapsulated bacteria are responsible for the majority of mortality among neonates and infants. The major components on the surface of these bacteria are polysaccharides which are important virulence factors. Immunity against these components protects against disease. However, most of the polysaccharides are thymus-independent (TI)-2 antigens which induce an inadequate immune response in neonates and infants. The mechanisms that are thought to play a role in the unresponsiveness of this age group to TI-2 stimuli will be discussed. The lack of immune response may be overcome by conjugating the polysaccharides to a carrier protein. This transforms bacterial polysaccharides from a TI-2 antigen into a thymus-dependent (TD) antigen, thereby inducing an immune response and immunological memory in neonates and infants. Such conjugated vaccines have been shown to be effective against the most common causes of invasive disease caused by encapsulated bacteria in neonates and children. These and several other approaches in current vaccine development will be discussed.
Toll-like receptors (TLRs) play a distinct role in battling respiratory syncytial virus (RSV) infections. However, due to a lack of representative animal models and several early controversies, the field is unclear. In this systematic review, we have elucidated conflicting results and outlined important factors that might affect study outcomes. We reviewed studies that used different doses/viral strains, performed virus propagation in different cell lines, or used different mice strains. The following firm conclusions can be drawn: multiple TLRs activate innate immunity upon RSV infection; TLR4 can influence TLR2 expression, suggesting that optimal induction of multiple signaling pathways is required to elicit protective, rather than deleterious innate immune responses following infection; in mice, TLR4, TLR2/-6, and TLR7 have immune-stimulating properties, while TLR3 activation occurs later and appears to downregulate immune responses; in humans, polymorphism studies have demonstrated an important role for TLR4-signaling; and activation of TLR-signaling leads to antiviral cytokine production, such as TNF-a and IFNs. Viral factors may block these pathways, thereby contributing to immune evasion and RSV survival. A better understanding of the complex interplay between TLRs and severe RSV infections might lead to efficient prophylactic and therapeutic treatments, as well as the development of adequate vaccines combined with TLR adjuvants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.