Adenosine causes growth arrest in recombinant mammalian cell cultures, which results in enhanced productivity of the recombinant protein. Adenosine is also known to increase intracellular ATP level when added to mammalian cells. As a cell's energy level affects its protein expression capacity, we investigated the factors that contribute to the increase in recombinant protein productivity. Chinese hamster ovary (CHO) cells expressing human interferon-gamma (IFNgamma) were treated with 1 mM adenosine on Day 2 of culture. The growth arrest resulted in 60% reduction in integral viable cell density when compared with control. However, IFNgamma titer improved 1.4-fold alongside a 2.5-fold increase in average specific productivity. The adenosine-treated cells also experienced a two-fold increase in ATP level that sustained for 3 days. Western blot studies revealed a relatively short-lived but strong activation of the energy sensor AMP-activated protein kinase (AMPK) in adenosine-treated cells. Activation of AMPK was probably due to adenosine being temporarily converted to AMP. Activated AMPK should have down-regulated protein translation by preventing mammalian target of rapamycin (mTOR) from phosphorylating and inactivating 4E-binding protein 1 (4E-BP1), a key repressor of protein translation initiation. However, Western blots showed increased phosphorylation of 4E-BP1 on Day 2 that lasted 3 days. This implied that a high concentration of ATP could keep 4E-BP1 inhibited, probably by directly modulating mTOR. This corroborated with an earlier in vitro observation (Dennis et al., Science. 2001;294:1102-1105). Inhibition of translation initiation repression is thus likely to contribute in part to the improvement in IFNgamma-specific productivity and titer.
Glycan head-groups attached to glycosphingolipids (GSLs) found in the cell membrane bilayer can alter in response to external stimuli and disease, making them potential markers and/or targets for cellular disease states. To identify such markers, comprehensive analyses of glycan structures must be undertaken. Conventional analyses of fluorescently labeled glycans using hydrophilic interaction high-performance liquid chromatography (HILIC) coupled with mass spectrometry (MS) provides relative quantitation and has the ability to perform automated glycan assignments using glucose unit (GU) and mass matching. The use of ion mobility (IM) as an additional level of separation can aid the characterization of closely related or isomeric structures through the generation of glycan collision cross section (CCS) identifiers. Here, we present a workflow for the analysis of procainamide-labeled GSL glycans using HILIC-IM-MS and a new, automated glycan identification strategy whereby multiple glycan attributes are combined to increase accuracy in automated structural assignments. For glycan matching and identification, an experimental reference database of GSL glycans containing GU, mass, and CCS values for each glycan was created. To assess the accuracy of glycan assignments, a distance-based confidence metric was used. The assignment accuracy was significantly better compared to conventional HILIC-MS approaches (using mass and GU only). This workflow was applied to the study of two Triple Negative Breast Cancer (TNBC) cell lines and revealed potential GSL glycosylation signatures characteristic of different TNBC subtypes.
An intact-cell mass spectrometry (ICM) method using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) was evaluated for the screening of stable recombinant Chinese hamster ovary (CHO) cell lines, an important mammalian cell line in bioprocessing. With rapid and simple cell pretreatments, viabilities of cells could be rapidly distinguished on the different fingerprints of mass spectra. Detectable m/z values on cell surfaces and their relative intensities were processed by two biostatistical methods, principle components analysis (PCA) and partial least squares (PLS), with promising results. Discrimination among cell lines with different expressed recombinant proteins or different productivities could be achieved. The ICM method has the advantage of providing multiple parameters simultaneously and possesses the potential to become a powerful method for routine monitoring of bioprocesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.