Purpose This study evaluates the Argus™ II Retinal Prosthesis System in blind subjects with severe outer retinal degeneration. Design The study design is a single arm, prospective, multicenter clinical trial. Participants Thirty subjects were enrolled in the United States and Europe between 6 June 2007 and 11 August 2009. All subjects were followed for a minimum of six months and up to 2.7 years. Methods The electronic stimulator and antenna of the implant was sutured onto the sclera using an encircling silicone band. Next, a pars plana vitrectomy was performed and the electrode array and cable were introduced into the eye via a pars plana sclerotomy. The microelectrode array was then tacked to the epiretinal surface. Main Outcome Measures The primary safety endpoint for the trial was the number, severity, and relation of adverse events. Principal performance endpoints were assessments of visual function as well as performance on orientation and mobility tasks. Results Subjects performed statistically better with system ON vs. OFF in the following tasks: object localization (96% of subjects); motion discrimination (57%); and discrimination of oriented gratings (23%). The best recorded visual acuity to date is 20/1260. Subjects’ mean performance on Orientation and Mobility tasks was significantly better when the System was ON vs. OFF. Seventy percent of the patients did not have any serious adverse events (SAEs). The most common SAE reported was either conjunctival erosion or dehiscence over the extraocular implant and was successfully treated in all subjects except in one which required explantation of the device without further complications. Conclusions The long-term safety results of Second Sight’s retinal prosthesis system are acceptable and the majority of subjects with profound visual loss perform better on visual tasks with system than without.
Age-related macular degeneration (AMD) remains a major cause of blindness, with dysfunction and loss of retinal pigment epithelium (RPE) central to disease progression. We engineered an RPE patch comprising a fully differentiated, human embryonic stem cell (hESC)-derived RPE monolayer on a coated, synthetic basement membrane. We delivered the patch, using a purpose-designed microsurgical tool, into the subretinal space of one eye in each of two patients with severe exudative AMD. Primary endpoints were incidence and severity of adverse events and proportion of subjects with improved best-corrected visual acuity of 15 letters or more. We report successful delivery and survival of the RPE patch by biomicroscopy and optical coherence tomography, and a visual acuity gain of 29 and 21 letters in the two patients, respectively, over 12 months. Only local immunosuppression was used long-term. We also present the preclinical surgical, cell safety and tumorigenicity studies leading to trial approval. This work supports the feasibility and safety of hESC-RPE patch transplantation as a regenerative strategy for AMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.