To investigate the function of MyoD in adult skeletal muscle, we interbred MyoD mutant mice with mdx mice, a model for Duchenne and Becker muscular dystrophy. Mice lacking both MyoD and dystrophin displayed a marked increase in severity of myopathy leading to premature death, suggesting a role for MyoD in muscle regeneration. Examination of MyoD mutant muscle revealed elevated numbers of myogenic cells; however, myoblasts derived from these cells displayed normal differentiation potential in vitro. Following injury, MyoD mutant muscle was severely deficient in regenerative ability, and we observed a striking reduction in the in vivo proliferation of myogenic cells during regeneration. Therefore, we propose that the failure of MyoD-deficient muscle to regenerate efficiently is not caused by a reduction in numbers of satellite cells, the stem cells of adult skeletal muscle, but results from an increased propensity for stem-cell self-renewal rather than progression through the myogenic program. The myogenic regulatory factors (MRFs] form a group of basic helix-loophelix (bHLHJ transcription factors consisting of MyoD, myogenin, Myf-5, and MRF4. The MRFs are expressed exclusively in skeletal muscle, and forcing their expression in a wide range of cultured cells induces the skeletal muscle differentiation program. Therefore, these transcription factors were postulated to have a master regulatory role in the development of the skeletal muscle lineage (for review, see Weintraub et al.
The cellular alterations associated with skeletal muscle differentiation share a high degree of similarity with key phenotypic changes usually ascribed to apoptosis. For example, actin fiber disassembly͞reorga-nization is a conserved feature of both apoptosis and differentiating myoblasts and the conserved muscle contractile protein, myosin light chain kinase, is required for the apoptotic feature of membrane blebbing. As such, these observations suggest that the induction of differentiation and apoptosis in the myogenic lineage may use overlapping cellular mechanisms. Here, we report that skeletal muscle differentiation depends on the activity of the key apoptotic protease, caspase 3. Peptide inhibition of caspase 3 activity or homologous deletion of caspase 3 leads to dramatic reduction in both myotube͞ myofiber formation and expression of muscle-specific proteins. Subsequently, we have identified Mammalian Sterile Twenty-like kinase as a crucial caspase 3 effector in this cellular process. Mammalian Sterile Twenty-like kinase is cleavage-activated by caspase 3, and restoration of this truncated kinase in caspase 3 null myoblasts restores the differentiation phenotype. Taken together, these results confirm a unique and unanticipated role for a caspase 3-mediated signal cascade in the promotion of myogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.