Passively detecting underwater sound from the air can allow aircraft and surface vessels to monitor the underwater acoustic environment. Experimental research into an optical hydrophone is being conducted for remote, aerial detection of underwater sound. A laser beam is directed onto the water surface to measure the velocity of the vibrations occurring as the underwater acoustic signal reaches the water surface. The acoustically generated surface vibrations modulate the phase of the laser beam. Sound detection occurs when the laser is reflected back towards the sensor. Therefore, laser alignment on the specularly reflecting water surface is critical. As the water surface moves, the laser beam is reflected away from the photodetector and no signal is obtained. One option to mitigate this problem is to continually steer the laser onto a spot on the water surface that provides a direct back-reflection. Results are presented from a laboratory test that investigates the feasibility of the acousto-optic sensor detection on hydrostatic and hydrodynamic surfaces using a laser Doppler vibrometer in combination with a laser-based, surface normal glint tracker for remotely detecting underwater sound. This paper outlines the acousto-optic sensor and tracker concepts and presents experimental results comparing sensor operation under various sea surface conditions.
Generating underwater acoustic signals from a remote, aerial location by use of a high-energy pulsed infrared laser has been demonstrated. The laser beam is directed from the air and focused onto the water surface, where the optical energy was converted into a propagating acoustic wave. Sound pressure levels of 185 dB re microPa (decibel re microPa) were consistently recorded under freshwater laboratory conditions at laser-pulse repetition rates of up to 1000 pulses/s. The nonlinear optoacoustic transmission concept is outlined, and the experimental results from investigation of the time-domain and frequency-domain characteristics of the generated underwater sound are provided. A high repetition rate, high-energy per pulse laser was used in this test under freshwater laboratory conditions. A means of deterministically controlling the spectrum of the underwater acoustic signal was investigated and demonstrated by varying the laser-pulse repetition rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.