Recent neuroimaging work has suggested that aggressive behaviour (AB) is associated with structural and functional brain abnormalities in processes subserving emotion processing and regulation. However, most neuroimaging studies on AB to date only contain relatively small sample sizes. To objectively investigate the consistency of previous structural and functional research in adolescent AB, we performed a systematic literature review and two coordinate-based activation likelihood estimation meta-analyses on eight VBM and nine functional neuroimaging studies in a total of 783 participants (408 [224AB/184 controls] and 375 [215 AB/160 controls] for structural and functional analysis respectively). We found 19 structural and eight functional foci of significant alterations in adolescents with AB, mainly located within the emotion processing and regulation network (including orbitofrontal, dorsomedial prefrontal and limbic cortex). A subsequent conjunction analysis revealed that functional and structural alterations co-localize in right dorsomedial prefrontal cortex and left insula. Our results are in line with meta-analytic work as well as structural, functional and connectivity findings to date, all of which make a strong point for the involvement of a network of brain areas responsible for emotion processing and regulation, which is disrupted in AB. Increased knowledge about the behavioural and neuronal underpinnings of AB is crucial for the development of novel and implementation of existing treatment strategies. Longitudinal research studies will have to show whether the observed alterations are a result or primary cause of the phenotypic characteristics in AB.
In the course of reading development children become familiar with letter strings and learn to distinguish between lexical and non-lexical items. In previous studies, the N1 component of the ERP was shown to reflect print tuning but also to be sensitive to lexical effects. It remains unclear, however, whether these two aspects of orthographic processing occur at the same time or in different time windows during the lengthy N1 component. Moreover, it is unclear whether these processes develop late or occur already at early stages of literacy acquisition and whether this is similar for native languages and languages acquired later in life. To address these questions, 27 children were tested longitudinally, i.e. before (mean: 7.6 years) and after one year of classroom-based English instruction. Additionally, 22 adult speakers of English as a foreign language (mean: 25.1 years) were investigated. A 128-channel EEG was recorded while participants performed a one-back task with native German words, English words, pseudowords and false-font strings. The event-related EEG analysis of early and late N1 phases revealed early effects related to print tuning and late effects related to lexical processing in the native, but not in the second language of adult readers. In the absence of lexicality effects in children, print tuning effects were found across both early and late N1 segments. The temporally distinct N1 sensitivities to print and lexicality reflect temporal dynamics of visual word processing, which seem to depend on reading expertise or maturation.
Background Despite the increasing interest in cardiac autonomic nervous activity, the normal development is not fully understood. The main aim was to determine the maturation of different cardiac sympathetic‐(SNS) and parasympathetic nervous system (PNS) activity parameters in healthy patients aged 0.5 to 20 years. A second aim was to determine potential sex differences. Methods and Results Five studies covering the 0.5‐ to 20‐year age range provided impedance‐ and electrocardiography recordings from which heart rate, different PNS‐parameters (eg, respiratory sinus arrhythmia) and an SNS‐parameter (pre‐ejection period) were collected. Age trends were computed in the mean values across 12 age‐bins and in the age‐specific variances. Age was associated with changes in mean and variance of all parameters. PNS‐activity followed a cubic trend, with an exponential increase from infancy, a plateau phase during middle childhood, followed by a decrease to adolescence. SNS‐activity showed a more linear trend, with a gradual decrease from infancy to adolescence. Boys had higher SNS‐activity at ages 11 to 15 years, while PNS‐activity was higher at 5 and 11 to 12 years with the plateau level reached earlier in girls. Interindividual variation was high at all ages. Variance was reasonably stable for SNS‐ and the log‐transformed PNS‐parameters. Conclusions Cardiac PNS‐ and SNS‐activity in childhood follows different maturational trajectories. Whereas PNS‐activity shows a cubic trend with a plateau phase during middle childhood, SNS‐activity shows a linear decrease from 0.5 to 20 years. Despite the large samples used, clinical use of the sex‐specific centile and percentile normative values is modest in view of the large individual differences, even within narrow age bands.
Early language delay has often been associated with atypical language/literacy development. Neuroimaging studies further indicate functional disruptions during language and print processing in school-age children with a retrospective report of early language delay. Behavioral data of 114 5-year-olds with a retrospective report of early language delay in infancy (N = 34) and those without (N = 80) and with a familial risk for dyslexia and those without are presented. Behaviorally, children with a retrospective report of early language delay exhibited reduced performance in language/reading-related measures. A voxel-based morphometry analysis in a subset (N = 46) demonstrated an association between reduced gray matter volume and early language delay in left-hemispheric middle temporal, occipital, and frontal regions. Alterations in middle temporal cortex in children with a retrospective report of early language delay were observed regardless of familial risk for dyslexia. Additionally, while children with isolated familial risk for dyslexia showed gray matter reductions in temporoparietal and occipitotemporal regions, these effects were most profound in children with both risk factors. An interaction effect of early language delay and familial risk was revealed in temporoparietal, occipital, and frontal cortex. Our findings support a cumulative effect of early behavioral and genetic risk factors on brain development and may ultimately inform diagnosis/treatment.
Pandemics such as the Covid-19 pandemic have shown to impact our physical and mental well-being, with particular challenges for children and families. We describe data from 43 adults (31♀, ages = 22–51; 21 mothers) and 26 children (10♀, ages = 7–17 years) including pre-pandemic brain function and seven assessment points during the first months of the pandemic. We investigated (1) changes in child and adult well-being, (2) mother–child associations of mental well-being, and (3) associations between pre-pandemic brain activation during mentalizing and later fears or burden. In adults the prevalence of clinically significant anxiety-levels was 34.88% and subthreshold depression 32.56%. Caregiver burden in parents was moderately elevated. Overall, scores of depression, anxiety, and caregiver burden decreased across the 11 weeks after Covid-19-onset. Children’s behavioral and emotional problems during Covid-19 did not significantly differ from pre-pandemic levels and decreased during restrictions. Mothers’ subjective burden of care was associated with children’s emotional and behavioral problems, while depression levels in mothers were related to children’s mood. Furthermore, meeting friends was a significant predictor of children’s mood during early restrictions. Pre-pandemic neural correlates of mentalizing in prefrontal regions preceded later development of fear of illnesses and viruses in all participants, while temporoparietal activation preceded higher subjective burden in mothers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.