A comparative study of the effects of exposure to high Cd2+ (50 µM) and excess Zn2+ (600 µM) on photosynthetic performance of hydroponically-grown durum wheat seedlings was performed. At day 8, Cd and Zn were added to the nutrient solution. After 7-days exposure, the chosen concentrations of both metals resulted in similar relative growth rate (RGR) inhibitions of about 50% and comparable retardations of the CO2 assimilation rates (about 30%) in the second developed leaf of wheat seedlings. Analysis of chlorophyll a fluorescence indicated that both metals disturbed photosynthetic electron transport processes which led to a 4- to 5-fold suppression of the efficiency of energy transformation in Photosystem II. Non-specific toxic effects of Cd and Zn, which prevailed, were an inactivation of part of Photosystem II reaction centres and their transformation into excitation quenching forms as well as disturbed electron transport in the oxygen-evolving complex. The specificity of the Cd and Zn modes of action was mainly expressed in the intensity of the toxicity effects: despite the similar inhibitions of the CO2 assimilation rates, the wheat photochemistry showed much more sensitivity to Cd than to Zn exposure.
The application of nanoparticles (NPs) has been proved as an efficient and promising technique for mitigating a wide range of stressors in plants. The present study elucidates the synergistic effect of iron oxide nanoparticles (IONPs) and silicon nanoparticles (SiNPs) in the attenuation of Cd toxicity in Phaseolus vulgaris. Seeds of P. vulgaris were treated with IONPs (10 mg/L) and SiNPs (20 mg/L). Seedlings of uniform size were transplanted to pots for 40 days. The results demonstrated that nanoparticles (NPs) enhanced growth, net photosynthetic rate, and gas exchange attributes in P. vulgaris plants grown in Cd-contaminated soil. Synergistic application of IONPs and SiNPs raised not only K+ content, but also biosynthesis of polyamines (PAs), which alleviated Cd stress in P. vulgaris seedlings. Additionally, NPs decreased malondialdehyde (MDA) content and electrolyte leakage (EL) in P. vulgaris plants exposed to Cd stress. These findings suggest that stress alleviation was mainly attributed to the enhanced accumulation of K+ content, improved antioxidant defense system, and higher spermidine (Spd) and putrescine (Put) levels. It is suggested that various forms of NPs can be applied synergistically to minimize heavy metal stress, thus increasing crop production under stressed conditions.
A comparative experiment was carried out with five Bulgarian and five foreign durum wheat cultivars. The aim of the experiment was to determine the chemical content and grain technological quality of some Bulgarian and foreign durum wheat cultivars grown under the agriecological conditions of Southern Bulgaria. The Vazhod cultivar proved to give the highest durum wheat grain yield, followed by Beloslava cultivar. Out of the foreign durum wheat cultivars the Durumko was notable for its higher productivity. The crude protein content in the grain was highest in Zagorka, Yavor and Yukon. The highest yield of gluten was reported in Beloslava, Vazhod and Zagorka.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.