538 yeast strains were isolated from dark chestnut soil collected from under the plants of the legume family (Fabaceae). The greatest number of microorganisms is found at soil depth 10-20 cm. Among the 538 strains of yeast 77 (14.3%) strains demonstrated the ability to synthesize IAA. 15 strains were attributed to high IAA-producing yeasts (above 10 μg/ml). The most active strains were YA05 with 51.7 ± 2.1 μg/ml of IAA and YR07 with 45.3 ± 1.5 μg/ml. In the study of effect of incubation time on IAA production the maximum accumulation of IAA coincided with maximum rates of biomass: at 120 h for YR07 and at 144 h for strain YA05. IAA production increased when medium was supplemented with the L-tryptophan. 400 μg/ml of L-tryptophan showed maximum IAA production. 10 strains demonstrated the ability to inhibit the growth and development of phytopathogenic fungi. YA05 and YR07 strains formed the largest zones of inhibition compared to the other strains--from 21.6 ± 0.3 to 30.6 ± 0.5 mm. Maximum zone of inhibition was observed for YA05 against Phytophtora infestans and YR07 strains against Fusarium graminearum. YA05 and YR07 strains were identified as Aureobasidium pullulans YA05 (GenBank accession No JF160955) and Rhodotorula mucilaginosa YR07 (GenBank accession No JF160956).
A biocomposite composed of bacterial cellulose (BC) gel-film and Bacillus subtilis (BS) cells was obtained and characterized with a view to future biomedical applications. The inclusion of functional ingredient (1010/g viable BS cells) in the composite was carried out by their joint aggregation with the BC gel-film. Immobilized BS cells displayed high antagonistic activity towards causative agents of wound infections such as Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa. Application of the BC/BS-biocomposite for the treatment of excision wounds, performed on laboratory animals, stimulated reparative processes and shortened the healing time. Possible mechanisms of the wound-healing effect of BC/BS gel films are discussed. In this work we claim that the developed BC/BS-material can be positioned as a universal wound coating and sanitary-hygienic product.
Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for “grafting” of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.