The notion of open innovation suggests that firms can boost their innovative performance by both acquiring knowledge from outside the company and deploying external paths to market for commercialization of non-core technologies. As innovations emerge increasingly from interorganisational cooperation, the background for such cooperation can also have an impact on the involvement of companies into open innovation processes. Thereby this paper proposes to analyze the barriers towards open innovation from three different aspects, such as internal firms' environment, institutional factors or innovation system and cultural background. Our findings indicate that economic systems and institutions (in particular the protection of IPRs) may have large effects on the behaviour of firms with respect to their engagement in open innovation practices. On the other hand, our results also suggest that the importance of appropriability regime may differ in the buy and sell sides of knowledge, and finally we demonstrate the influence of peculiarities of national cultures upon the adoption of certain elements of open innovation model.
A biocomposite composed of bacterial cellulose (BC) gel-film and Bacillus subtilis (BS) cells was obtained and characterized with a view to future biomedical applications. The inclusion of functional ingredient (1010/g viable BS cells) in the composite was carried out by their joint aggregation with the BC gel-film. Immobilized BS cells displayed high antagonistic activity towards causative agents of wound infections such as Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa. Application of the BC/BS-biocomposite for the treatment of excision wounds, performed on laboratory animals, stimulated reparative processes and shortened the healing time. Possible mechanisms of the wound-healing effect of BC/BS gel films are discussed. In this work we claim that the developed BC/BS-material can be positioned as a universal wound coating and sanitary-hygienic product.
Here, we report the complete genome sequencing of strains A/equine/Kostanay/9/2012(H3N8) and A/equine/LKZ/9/2012(H3N8) of the equine influenza virus belonging to Florida sublineage, clade 2. The strains were isolated in 2012 in the northern and southern regions of Kazakhstan, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.