Carrier sensing multiple access/collision avoidance (CSMA/CA) is the backbone MAC protocol for IEEE 802.11 networks. However, tuning the binary exponential back-off (BEB) mechanism of CSMA/CA in user-dense scenarios so as to maximize aggregate throughput still remains a practically essential and challenging problem. In this paper, we propose a new and enhanced multiple access mechanism based on the application of deep reinforcement learning (DRL) and Federated learning (FL). A new Monte Carlo (MC) reward updating method for DRL training is proposed and the access history of each station is used to derive a DRL-based MAC protocol that improves the network throughput vis-a-vis the traditional distributed coordination function (DCF). Further, federated learning (FL) is applied to achieve fairness among users. The simulation results showcase that the proposed federated reinforcement multiple access (FRMA) performs better than basic DCF by 20% and DCF with request-to-send/clear-to-send (RTS/CTS) by 5% while guaranteeing the fairness in user-dense scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.