Bone lesions are an important public health problem, with high socioeconomic costs. Bone tissue repair is coordinated by an inflammatory dynamic process mediated by osteoprogenitor cells of the periosteum and endosteum, responsible for the formation of a new bone matrix. Studies using antioxidant products from plants for bone lesion treatment have been growing worldwide. We developed a systematic review to compile the results of works with animal models investigating the anti-inflammatory activity of plant extracts in the treatment of bone lesions and analyze the methodological quality of the studies on this subject. Studies were selected in the PubMed/MEDLINE, Scopus, and Web of Science databases according to the PRISMA statement. The research filters were constructed using three parameters: animal model, bone repair, and plant extracts. 31 full-text articles were recovered from 10 countries. Phytochemical prospecting was reported in 15 studies (48.39%). The most common secondary metabolites were flavonoids, cited in 32.26% studies (n = 10). Essential criteria to in vivo animal studies were frequently underreported, suggesting publication bias. The animals treated with plant extracts presented positive results in the osteoblastic proliferation, and consequently, this treatment accelerated osteogenic differentiation and bone callus formation, as well as bone fracture repair. Possibly, these results are associated with antioxidant, regenerative, and anti-inflammatory power of the extracts. The absence or incomplete characterization of the animal models, treatment protocols, and phytochemical and toxicity analyses impairs the internal validity of the evidence, making it difficult to determine the effectiveness and safety of plant-derived products in bone repair.
Natural substances are used in folk medicines to treat injuries. Strychnos pseudoquina has scarring, antipyretic, and antimalarial actions. The present study aimed to analyze the effect of S. pseudoquina on cutaneous wound healing in rats. The S. pseudoquina extract was submitted to phytochemical prospection. The levels of flavonoids and total phenolic compounds in the extract were 50.7 mg/g and 2.59 mg/g, respectively. Thirty Wistar rats were individualized in cages with food and water ad libitum (registration no. 730/2014). After anesthesia, three circular wounds (12mm diameter) were made in the animals, which were randomly separated into five treatments: Sal, saline; VO, ointment vehicles (lanolin and Vaseline); SS, positive control (silver sulfadiazine 1%); LE 5, freeze-dried extract 5%; and LE 10, lyophilized extract 10%. The animals were treated with the ointment daily for 21 days. Every seven days, the area and the rate of wound contraction were evaluated. Tissue samples were removed for histopathological analysis of the number of mast cells, elastic and collagen fibers, and biochemical analyses, quantification of malondialdehyde (MDA), carbonylated proteins (PCN), superoxide dismutase (SOD), catalase (CAT), transforming growth factor β (TGF-β), Interleukin 10 (IL-10) and tumor necrosis factor (TNF). The number of mast cells, collagen and elastic fibers in the rat wounds were higher in the treatments with the plant. The extract also stimulated the activity of antioxidant enzymes, particularly SOD, presenting high levels, and maintained low levels of PCN. The TGF-β and IL-10 concentration was higher in the LE5 and LE10 treatment of the extract than in the Sal, OV and SS treatments on day 7. The ointment based on S. pseudoquina closed the wound faster and accelerated wound healing in animals.
The main objective of this study was to investigate the action of doxycycline hyclate (Dx) in the skin wound healing process in Wistar rats. We investigated the effect of Dx on inflammatory cell recruitment and production of inflammatory mediators via in vitro and in vivo analysis. In addition, we analyzed neovascularization, extracellular matrix deposition, and antioxidant potential of Dx on cutaneous repair in Wistar rats. Male animals ( n = 15 ) were divided into three groups with five animals each (protocol: 72/2017), and three skin wounds (12 mm diameter) were created on the back of the animals. The groups were as follows: C, received distilled water (control); Dx1, doxycycline hyclate (10 mg/kg/day); and Dx2, doxycycline hyclate (30 mg/kg/day). The applications were carried out daily for up to 21 days, and tissues from different wounds were removed every 7 days. Our in vitro analysis demonstrated that Dx led to macrophage proliferation and increased N-acetyl-β-D-glucosaminidase (NAG) production, besides decreased cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and metalloproteinases (MMP), which indicates that macrophage activation and COX-2 inhibition are possibly regulated by independent mechanisms. In vivo, our findings presented increased cellularity, blood vessels, and the number of mast cells. However, downregulation was observed in the COX-2 and PGE2 expression, which was limited to epidermal cells. Our results also showed that the downregulation of this pathway benefits the oxidative balance by reducing protein carbonyls, malondialdehyde, nitric oxide, and hydrogen peroxide (H2O2). In addition, there was an increase in the antioxidant enzymes (catalase and superoxide dismutase) after Dx exposure, which demonstrates its antioxidant potential. Finally, Dx increased the number of types I collagen and elastic fibers and reduced the levels of MMP, thus accelerating the closure of skin wounds. Our findings indicated that both doses of Dx can modulate the skin repair process, but the best effects were observed after exposure to the highest dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.