Folate is an essential micronutrient required for both cellular proliferation through de novo nucleotide synthesis and epigenetic regulation of gene expression through methylation. This dual requirement places a particular demand on folate availability during pregnancy when both rapid cell generation and programmed differentiation of maternal, extraembryonic, and embryonic/fetal tissues are required. Accordingly, prenatal neurodevelopment is particularly susceptible to folate deficiency, which can predispose to neural tube defects, or when effective transport into the brain is impaired, cerebral folate deficiency. Consequently, adequate folate consumption, in the form of folic acid (FA) fortification and supplement use, is widely recommended and has led to a substantial increase in the amount of FA intake during pregnancy in some populations. Here, we show that either maternal folate deficiency or FA excess in mice results in disruptions in folate metabolism of the offspring, suggesting diversion of the folate cycle from methylation to DNA synthesis. Paradoxically, either intervention causes comparable neurodevelopmental changes by delaying prenatal cerebral cortical neurogenesis in favor of late-born neurons. These cytoarchitectural and biochemical alterations are accompanied by behavioral abnormalities in FA test groups compared with controls. Our findings point to overlooked potential neurodevelopmental risks associated with excessively high levels of prenatal FA intake.
Background Folate is essential for DNA synthesis, DNA repair, cell proliferation, development, and morphogenesis. Folic acid (FA) is a nutritional supplement used to fortify human diets. Objectives We investigated the effects of dietary FA on early mammary gland (MG) development and hyperplasia. Methods Study 1: nulliparous female FVB wild-type (WT) mice were fed control (Con; 2 mg FA/kg), deficient (Def; 0 mg FA/kg), excess (Ex; 5 mg FA/kg), or super excess (S-Ex; 20 mg FA/kg) diets for 8 wk before mating to WT or heterozygous FVB/N-Tg[mouse mammary tumor virus long terminal repeat (MMTV)-polyomavirus middle T antigen (PyVT)]634Mul/J (MMTV-PyMT+/−) transgenic males. Dams were fed these diets until they weaned WT or MMTV-PyMT+/− pups, which were fed the dam's diet from postnatal day (PND) 21 to 42. Tissues were collected from female progeny at PNDs 1, 21, and 42. Study 2: Con or Def diets were fed to WT intact females and males from PND 21 to 56, or to ovariectomized females from PND 21 to 77; tissues were collected at PND 56 or 77. Growth of all offspring, development of MGs, MG hyperplasia, supramammary lymph nodes, thymus and spleen, cell proliferation, and expression of MG growth factors were measured. Results Study 1: Ex or S-Ex did not affect postnatal MG development or hyperplasia. The rate of isometric MG growth (PND 1–21) was reduced by 69% in Def female progeny (P < 0.0001). Similarly, hyperplastic growth in MGs of Def MMTV-PyMT+/− offspring was 18% of Con (P < 0.05). The Def diet reduced supramammary lymph node size by 20% (P < 0.0001) and increased MG insulin-like growth factor 2 mRNA by 200% (P < 0.05) and protein by 130%–150% (P < 0.05). Study 2: the Def diet did not affect MG growth, but it did reduce supramammary lymph node size (P < 0.05), spleen weight (P < 0.001), and thymic medulla area (P < 0.05). Conclusions In utero and postnatal folate deficiency reduced the isometric development of the MGs and early MG hyperplasia. Postnatal folate deficiency reduced the development of lymphatic tissues.
Background Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology . MethodsHere, in an effort to untangle the origins of NMDs in Wdfy3lacZ mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild type cells concomitantly in vivo using immunofluorescent techniques. ResultsWe revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. Limitations While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients. ConclusionsOur genetic approach revealed several cell autonomous requirements of Wdfy3 in neuronal development that could underly the pathogenic mechanisms of WDFY3-related ASD conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for Wdfy3 in regulating neuronal function and interconnectivity in postnatal life.
Background Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology. Methods Here, in an effort to untangle the origins of NMDs in Wdfy3lacZ mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques. Results We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. Limitations While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation. Conclusions Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.