Fermatean fuzzy set (FFS) is a more efficient, flexible, and generalized model to deal with uncertainty, as compared to intuitionistic and Pythagorean fuzzy models. This research article presents a novel multiple-attribute decision-making (MADM) technique based on FFS. Aggregation operators (AOs), for example, Dombi, Einstein, and Hamacher, are frequently being used in the MADM process and are considered useful tools for evaluating the given alternatives. Among these, one of the most effective is the Hamacher operator. The salient feature of this operator is that it reduces the impact of negative information and provides more accurate results. Motivated by the primary characteristics of the Hamacher operator, we apply Hamacher interactive aggregation operators based on FFSs to determine the best alternative. Using Hamacher’s norm operations, we introduce some new geometric operators, namely, Fermatean fuzzy Hamacher interactive weighted geometric (FFHIWG) operator, Fermatean fuzzy Hamacher interactive ordered weighted geometric (FFHIOWG) operator, and Fermatean fuzzy Hamacher interactive hybrid weighted geometric (FFHIHWG) operator. Some important results and properties of the proposed AOs are discussed, and to achieve the optimal alternative, the proposed MADM technique is carried out in a real-life application of the medical field. An algorithm of the proposed technique is also developed. The significance of the proposed method is that Fermatean fuzzy Hamacher interactive geometric (FFHIG) operators deal with the relationship among belongingness degree (BD) and nonbelongingness degree (NBD) of the objects, which perform a crucial role in decision-making (DM). At last, to show the exactness and validity of the proposed work, a comparative analysis of the proposed model and the existing models is presented.
Translations and multiplications of bipolar fuzzy BCK-submodules are discussed. Extensions of bipolar fuzzy BCK-submodules are introduced. Relations between translations and multiplications of bipolar fuzzy BCK-submodules are presented.Hindawi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.