Methicillin-resistant Staphylococcus aureus (MRSA) have been found in various farm animal species throughout the world. Yet, methicillin-susceptible S. aureus (MSSA), methicillin-susceptible non-S. aureus (MS-NSA), and methicillin-resistant non-S. aureus (MR-NSA) were not investigated. Therefore, we persued to determine the diversity in their phenotypic virulence assay, phenotypic antimicrobial resistance profile and molecular characterization in one of the food chains in Egypt. Samples were collected during 2013 from beef meat at retail. Twenty seven isolates comprising five species (S. hyicus, S. aureus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus) were characterized for their antibiotic resistance phenotypic profile and antibiotic resistance genes (mecA, cfr, gyrA, gyrB, and grlA). Out of the 27 Staphylococcus isolates only one isolate was resistant to the 12 antibiotics representing nine classes. Raw beef meat sold across the Great Cairo zone, contains 66.7% of MRS, with highest prevalence was reported in S. aureus (66.7%), while the MRS non-S. aureus strains constituted 66.7% from which S. hyicus (60%), S. intermedius (33.3%), S. schleiferi subsp. coagulans (100%), and S. lentus (100%) were MRS. Seven S. aureus, six S. hyicus, four S. schleiferi subsp. coagulans, three S. intermedius, and one S. lentus isolates although being resistant to oxacillin yet, 11/27 (40.7%) carried the mecA gene. At the same time, the cfr gene was present in 2 of the nine S. aureus isolates, and totally undetectable in S. hyicus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus. Although, global researches largely focused into MRSA and MR-NSA in animals on pigs, the analysis of our results stipulates, that buffaloes and cattle could be MRSA dispersers and that this theme is not specific to pigs. Detection of MSSA virulence determinants is a must, as although oxacillin resistance may be absent yet, the MSSA may carry the virulence determinants which could be a source of perilous S. aureus for the human community.
Aim:The aim of the current study was to isolate and identify naturally occurring probiotic Lactobacillus species in different animals with the different environmental background including fish, and farm animals to investigate interspecies differences in probiotics on the species level.Materials and Methods:A total of 44 fecal and milk samples were collected under aseptic conditions from cattle, buffalo, camel, sheep, goats, and fish. The samples were cultured, and the isolated strains were confirmed biochemically and molecularly using 16S rRNA multiplex polymerase chain reaction (PCR) analysis following DNA extraction from the bacterial isolates.Results:A total of 31 isolates identified as lactobacilli were isolated from cattle milk, goat feces, sheep feces, fish feces, buffalo milk, camel milk, and goats’ milk. Lactobacillus species were identified based on the size of the PCR product. The results showed that different species were different in their lactobacilli content. At the same time, there were some differences between individuals of the same species.Conclusion:The diversity of probiotic strains isolated from different animal species implies different types of benefits to the host. Although it would be both money - and time-consuming research, discovering the benefit of each of these strains may provide very important information for the health of both human and animal. Furthermore, transferring these beneficial effects either to individuals within the same species or between different species would be of great importance.
A very limited research work concerning foods of porcine origin in Egypt were obtained in spite of presence of a considerable swine population and consumers. This study was conducted to investigate the prevalence of food poisoning bacteria isolated from local and imported retail pork by-products in Egyptian markets. A total of 80 pork samples, including 60 local pork by-products and 20 imported ones were used. The isolated bacteria species after biochemical and serological typing were Escherichia coli (59) and distributed as E. coli O157(27), E. coli O146(18) and E. coli O111 (14) by 33.75, 22.5 and 17.5%, respectively followed by Staphylococcus aureus which was isolated from 23 (28.75%), Salmonella spp. was represented by Salmonella typhimurium (9) Salmonella enteritidis (7) and Salmonella agona (4), as 11.25,8.75, and 5%, respectively. Finally, Listeria monocytogenes was isolated from 9 samples as 11.25%. The bacterial isolates were sensitive to ciprofloxacin and more resistant to penicillin, gentamicin, amoxicillin and ceftazidime. The bacterial isolation is considerably more in the local pork by-products than the imported samples. On the whole, both types are commonly in permissible limits of the Egyptian food quality standard as the high A.P.C. were Staphylococci and E. coli followed by Salmonella spp., then L. monocytogenes. To the best of our knowledge, this is the first report on isolation and identification of food born bacteria from pork by-products in Egypt.
Background and Aim: The World Health Organization considers multidrug-resistant (MDR) Klebsiella pneumoniae a major global threat. Horses harbor commensal isolates of this bacterial species and potentially serve as reservoirs for human MDR bacteria. This study investigated antimicrobial resistance in horses caused by extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae. Materials and Methods: One hundred fifty-nine nasal swab samples were collected from horses with respiratory distress not treated with cefotaxime and erythromycin. Biochemical and serological identification was performed on all samples. Polymerase chain reaction (PCR) was used to detect 16S-23S ITS, mucoviscosity-associated gene (magA), uridine diphosphate galacturonate 4-epimerase gene (uge), and iron uptake system gene (kfu), blaTEM, blaSHV, and blaCTX genes. Sequence analysis and phylogenetic relatedness of randomly selected K. pneumoniae isolates carrying the blaTEM gene were performed. Results: Ten isolates of Klebsiella spp. were obtained from 159 samples, with an incidence of 6.28% (10 of 159). Based on biochemical and serological identification, K. pneumoniae was detected in 4.4% (7 of 159) of the samples. Using PCR, all tested K. pneumoniae isolates (n=7) carried the 16S-23S ITS gene. By contrast, no isolates carried magA, uge, and kfu genes. The blaTEM gene was detected in all test isolates. Moreover, all isolates did not harbor the blaSHV or blaCTX gene. Sequence analysis and phylogenetic relatedness reported that the maximum likelihood unrooted tree generated indicated the clustering of the test isolate with the other Gram-negative isolate blaTEM. Finally, the sequence distance of the blaTEM gene of the test isolate (generated by Lasergene) showed an identity range of 98.4-100% with the blaTEM gene of the different test isolates. Conclusion: The misuse of antimicrobials and insufficient veterinary services might help generate a population of ESBL-producing K. pneumoniae in equines and humans, representing a public health risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.