Aim::This study was devoted to elucidate the tetracycline resistance of coagulase-negative staphylococci (CNS) derived from normal and subclinical mastitic (SCM) buffaloes’ milk in Egypt.Materials and Methods: ::A total of 81 milk samples from 46 normal buffalo milk samples and 35 SCM buffalo milk samples at private dairy farms of Egypt were used in this study. CNS were identified using phenotypic and molecular methods (polymerase chain reaction [PCR]). CNS isolates were tested for tetracycline resistance using routine methods and multiplex PCR targeting tetracycline (tet) resistance genes followed by sequencing of positive PCR products and phylogenetic analysis.Results::Isolation and identification of 28 (34.5%) CNS from normal and SCM buffaloes’ milk, namely, Staphylococcus intermedius (39.2%), Staphylococcus xylosus (25.0%), Staphylococcus epidermidis (10.7%), Staphylococcus hominis (10.7%), and 3.5% to each of Staphylococcus sciuri, Staphylococcus hyicus, Staphylococcus lugdunensis, and Staphylococcus simulans. Using nested PCR, all the 28 CNS isolates revealed positive for 16srRNA gene specific for genus staphylococci and negative for thermonuclease (nuc) gene specific for Staphylococcus aureus species. The presence of tetracycline resistance-encoding genes (tetK, tetL, tetM, and tetO) was detected by multiplex PCR. All isolates were negative for tetL, M, and O genes while 14 (50%) CNS isolates were positive for tetK gene, namely, S. lugdunensis (100%), S. hominis (100%), S. epidermidis (66.6%), S. intermedius (45.4%), and S. xylosus (42.8%). Nucleotide sequencing of tetK gene followed by phylogenetic analysis showed the high homology between our CNS isolates genes of tetracycline resistance with S. aureus isolates including Egyptian ones. This proves the transfer of the tetracycline resistance encoding genes between coagulase-negative and coagulase positive Staphylococcus spp.Conclusion::CNS isolates have distinguishingly high resistance to tetracycline. Abundant tetracycline usage for mastitis treatment leads to the spread of genetic resistance mechanisms inside CNS strains and among all Staphylococcus spp. Consequently, tetracycline is not effective anymore.
Aim:The aim of the current study was to isolate and identify naturally occurring probiotic Lactobacillus species in different animals with the different environmental background including fish, and farm animals to investigate interspecies differences in probiotics on the species level.Materials and Methods:A total of 44 fecal and milk samples were collected under aseptic conditions from cattle, buffalo, camel, sheep, goats, and fish. The samples were cultured, and the isolated strains were confirmed biochemically and molecularly using 16S rRNA multiplex polymerase chain reaction (PCR) analysis following DNA extraction from the bacterial isolates.Results:A total of 31 isolates identified as lactobacilli were isolated from cattle milk, goat feces, sheep feces, fish feces, buffalo milk, camel milk, and goats’ milk. Lactobacillus species were identified based on the size of the PCR product. The results showed that different species were different in their lactobacilli content. At the same time, there were some differences between individuals of the same species.Conclusion:The diversity of probiotic strains isolated from different animal species implies different types of benefits to the host. Although it would be both money - and time-consuming research, discovering the benefit of each of these strains may provide very important information for the health of both human and animal. Furthermore, transferring these beneficial effects either to individuals within the same species or between different species would be of great importance.
This study aimed to isolate and identify enterococci obtained from fresh faecal swabs of 16 healthy dogs. Following molecular identification, all isolates were screened against the most critical virulence factors as well as enterocin (bacteriocin) determinants to confirm that the isolated enterococcus was safe to be used as host-specific probiotic. Enterococcus faecium was isolated and confirmed in 8 out of the 16 samples. Regarding the assessment of the virulence determinants, E. faecium strains were negative for tested (gelE and esp) virulence genes. Furthermore, the genome was evaluated for the incidence of five known enterocin genes by specific PCR amplification. Four strains encoding entAS-48 gene were found, while only one strain harboured the entL50A/B gene. Based on these results, five of the E. faecium isolated in this study were considered as promising probiotic candidates for dogs.
Background and Aim: Upper respiratory tract infections are common in horses and can be caused by a variety of pathogens, mainly Streptococcus equi subsp. equi, which are a significant equine pathogen causing major health issues as well as financial losses to the equine industry. This study aimed to determine the prevalence of Streptococcal bacteria in equines in Egypt, and characterize vancomycin-resistant S. equi subsp. equi phenotypically and genotypically. Materials and Methods: S. equi subsp. equi was isolated from internal nares of horses. All strains were confirmed by polymerase chain reaction-based detection of Streptococcus genus-specific 16S rRNA, sodA and seeI genes. Antibiotic susceptibility was determined phenotypically using the disk diffusion method. Genotypic detection of antibiotic resistance genes was performed by analyzing as β-lactamase resistance (blaZ), tetracycline resistance (tetK), vancomycin resistance (vanA), and chloramphenicol resistance (fexA). Results: Eight streptococcal isolates were confirmed as S. equi subsp. equi. The genotypic characterization of antibiotic resistance showed resistance to vanA and tetK, with a frequency of 87.5% and 12.5%, respectively, while the frequency of sensitivity was 100% for blaz gene and fexA gene. Conclusion: In this study, we assessed vancomycin-resistant S. equi subsp. equi from equines suffering from respiratory manifestation in Egypt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.