The four compounds Na 2 M 2 TeO 6 (M 2þ = Ni, Co, Zn, Mg) have been prepared by solid-state reactions in air at 600-820 °C and characterized by powder X-ray diffraction, redox titration, impedance, and polarization measurements on ceramic samples. All of them are superstructures of the well-known hexagonal layered P2-type with ordering of M and Te in octahedral brucite-like layers. They have similar parameters of the hexagonal cells: a = 5.20-5.28 Å, c = 11.14-11.31 Å, but different stacking sequences along c. With M = Co, Zn, Mg (P6 3 22), there are columns Te M Te M and M M M M, but with M = Ni (P6 3 /mcm), there are columns Te Te Te Te and Ni Ni Ni Ni. As little as 5% Li substitution for Ni induces transformation to the P6 3 22 structure. Sodium ions in the interlayer gaps are disordered over a number of trigonal prisms sharing faces and exhibit high conductivity: 4-11 S/m at 300 °C, despite relatively low densities of the ceramics. The materials are purely ionic conductors; the largest electronic contribution (0.1% at 300 °C) has been found for the Co compound, presumably due to a minor admixture of Co(3þ).
Two synthetic routes-ion-exchange preparation from layered Na(3)Ni(2)SbO(6) at 300 °C and direct solid-state synthesis at 1150 °C resulted in layered Li(3)Ni(2)SbO(6), a cation-ordered derivative from the rocksalt type. The Fddd form reported earlier could not be reproduced. According to the XRD Rietveld analysis, Li(3)Ni(2)SbO(6) is a pseudohexagonal monoclinic structure, C2/m, with a = 5.1828(2) Å, b = 8.9677(3) Å, c = 5.1577(2) Å, β = 109.696(2)°. No Li/Ni mixed occupancy was detected. At high temperatures, the magnetic susceptibility follows the Curie-Weiss law with a positive value of Weiss temperature, ∼8 K, indicating a predominance of ferromagnetic interactions. However, Li(3)Ni(2)SbO(6) orders antiferromagnetically at T(N)∼ 15 K. The effective magnetic moment is 4.3 μ(B)/f.u. which satisfactorily agrees with theoretical estimations assuming high-spin configuration of Ni(2+) (S = 1). Electron spin resonance (ESR) spectra show single Lorentzian shape line attributed to Ni(2+) ion in octahedral coordination. The absorption is characterized by isotropic temperature independent effective g-factor g = 2.150 ± 0.005. In accordance with the layered honeycomb crystal structure determined for Li(3)Ni(2)SbO(6), the superexchange interaction between Ni(2+) ions through Ni-O-Ni pathways within Ni(2)SbO(6) layers are assumed to be ferromagnetic, while the dominant interaction between layers is antiferromagnetic.
Structure, electrochemical, magnetic and resonance properties of new layered antimonate Li(4)FeSbO(6) were comprehensively studied using powder X-ray diffraction, cyclic voltammetry, magnetic susceptibility, heat capacity, electron spin resonance and Mössbauer spectroscopy. In the crystal structure the iron ions form the triangular network within (LiFeSbO(6))(3-) layers alternating with nonmagnetic lithium layers. The electrochemical activity studied implies an Fe(3+)/Fe(4+) redox couple at 4.3 V (ox.) and 3.9 V (red.) thereby revealing that Li can be reversibly extracted. The long-range antiferromagnetic order was found to occur at the Néel temperature, T(N) ≈ 3.6 K, confirmed both by the magnetic susceptibility data and specific heat ones. The effective magnetic moment is estimated to be 5.93 μ(B)/f.u. and satisfactorily agrees with theoretical estimations assuming high-spin configuration of Fe(3+) (S = 5/2). In the magnetically ordered state, though, the magnetization demonstrates rather peculiar behavior. An additional anomaly on the M(T) curves appears at T(2) < T(N) in moderate magnetic field. The positions of transitions at T(N) and T(2) separate increasingly with increasing external field. Multiple measurements consistently demonstrated field-sensitive moving of magnetic phase boundaries constituting a unique phase diagram for the compound under study. The complex low-dimensional (2D) nature of magnetic coupling was confirmed by the dynamic magnetic properties study. Electron spin resonance from Fe(3+) ions in paramagnetic phase is characterized by a temperature independent effective g-factor of 1.99 ± 0.01. However, the distortion and broadening of the ESR line were found to take place upon approaching the magnetically ordered state from above. The divergence of the temperature-dependent linewidth is analyzed in terms of both critical behavior close to long-range magnetic order and the Berezinskii-Kosterlitz-Thouless (BKT)-type transition. Heat capacity measurements even at zero field manifested an appearance of the additional anomaly at temperatures below the Néel temperature. The temperature dependence of ESR intensity, linewidth and shift of the resonant field imply an extended region of short-range order correlations in the compound studied. The rich variety of the anomalies in magnetic and resonance properties makes this new antimonate a very interesting system to investigate the multiple phase transitions and competing exchange interaction due to the critical role of the layered structure organization accompanied by the frustration effects in triangular antiferromagnets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.