Squaramides constitute a novel class of RNA polymerase inhibitors of which genetic evidence and computational modeling previously have suggested an inhibitory mechanism mediated by binding to the RNA polymerase switch region. An iterative chemistry program increased the fraction unbound to human plasma protein from below minimum detection levels, i.e. <1%, to 4~6%, while retaining biochemical potency. Since in vitro antimicrobial activity against an efflux-negative strain of Haemophilus influenzae was 4~8-fold higher, the combined improvement was at least 20~60-fold. Co-crystal structures of Escherichia coli RNA polymerase with two key squaramides showed displacement of the switch 2, predicted to interfere with the conformational change of clamp domain and/or with binding of non-template DNA, a mechanism akin to that of natural product myxopyronin. Furthermore, the structures confirmed the chemical features required for biochemical potency. The terminal isoxazole and benzyl rings bind into distinct relatively narrow, hydrophobic pockets and both are required for biochemical potency. In contrast, the linker composed of squarate and piperidine accesses different conformations in their respective co-crystal structures with RNA polymerase, reflecting its main role of proper orientation of the aforementioned terminal rings. These observations further explain the tolerance of hydrophilic substitutions in the linker region that was exploited to improve the fraction unbound to human plasma protein while retaining biochemical potency.
A series of inhibitors with a squaramide core was synthesized following its discovery in a high-throughput screen for novel inhibitors of a transcription-coupled translation assay using Escherichia coli S30 extracts. The inhibitors were inactive when the plasmid substrate was replaced with mRNA, suggesting they interfered with transcription. This was confirmed by their inhibition of purified E. coli RNA polymerase. The series had antimicrobial activity against efflux-negative strains of E. coli and Haemophilus influenzae. Like rifampin, the squaramides preferentially inhibited synthesis of RNA and protein over fatty acids, peptidoglycan, and DNA. However, squaramide-resistant mutants were not cross-resistant to rifampin. Nine different mutations were found in parts of rpoB or rpoC that together encode the so-called switch region of RNA polymerase. This is the binding site of the natural antibiotics myxopyronin, corallopyronin, and ripostatin and the drug fidaxomicin. Computational modeling using the X-ray crystal structure of the myxopyronin-bound RNA polymerase of Thermus thermophilus suggests a binding mode of these inhibitors that is consistent with the resistance mutations. The squaramides are the first reported non-natural-productrelated, rapidly diversifiable antibacterial inhibitors acting via the switch region of RNA polymerase. C linical resistance to currently prescribed antibiotics is on the rise, thus increasing the need for new classes of antimicrobials that can circumvent emerging resistance mechanisms (10). There are still only a few enzymes that are essential for bacterial growth and have been clinically validated as antibacterial targets. All clinical antibacterial protein translation inhibitors have so far been identified by cell-based screening efforts with compounds from natural sources (8). New, small inhibitors might be found by screening small-molecule libraries for inhibitors of the translation machinery with an in vitro system, such as transcription-coupled translation in bacterial S30 extracts.Here, we report the discovery of squaramides as inhibitors of RNA polymerase (RNAP) that resulted from such a screening effort. The antimicrobial activity against an efflux-negative strain of H. influenzae was exploited to show that squaramides mediate their inhibitory activity via the switch region of RNAP. Their mode of action therefore is similar to that of the natural compounds myxopyronin, corallopyronin, ripostatin, and fidaxomicin (26) rather than that of rifamycins, which bind closer to the catalytic site and prevent RNA extension (7). This is the first report of rapidly diversifiable small-molecule inhibitors of RNAP with that mode of inhibition, supporting the use of a transcription-coupled translation assay to find novel inhibitory scaffolds of the RNAP switch region in small-molecule collections. MATERIALS AND METHODSBacterial strains. E. coli RNAP and S30 extracts were isolated from E. coli MRE600 (ATCC 2941). For susceptibility studies E. coli ATCC 27325 and H. influenzae ATCC 51907 ...
cBacterial biosensor strains can be useful tools for the discovery and characterization of antibacterial compounds. A plasmid-based reporter vector containing a transcriptional fusion between the recA promoter and green fluorescence protein gene was introduced into an Escherichia coli ⌬tolC strain to create a biosensor strain that selectively senses inhibitors of DNA metabolism via the SOS response. The strain was used to develop a high-throughput assay to identify new inhibitors of DNA metabolism. Screening of the AstraZeneca compound library with this strain identified known inhibitors of DNA metabolism, as well as novel chemotypes. The cellular target of one novel series was elucidated as DNA gyrase through genetic characterization of laboratory-generated resistant mutants followed by 50% inhibitory concentration measurements in a DNA gyrase activity assay. These studies validated the use of this antibiotic biosensor strain to identify novel selective inhibitors of DNA metabolism by high-throughput screening.
Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.