Background: Cellular RNA polymerases start transcription by de novo RNA priming. Results: Structures and biochemical studies of initially transcribing complexes elucidate the de novo transcription initiation and early stage of RNA transcription. Conclusion: 5Ј-end of RNA in the transcribing complex starts ejection from core enzyme. Significance: Insights from this study can be applicable to all cellular RNA polymerases.
In bacteria, transcription and translation are coupled processes, in which movement of RNA polymerase (RNAP) synthesizing mRNA is coordinated with movement of the first ribosome translating mRNA. Coupling is modulated by the transcription factors NusG–which is thought to bridge RNAP and ribosome–and NusA. Here, we report cryo-EM structures of Escherichia coli transcription-translation complexes (TTCs) containing different-length mRNA spacers between RNAP and the ribosome active-center P-site. Structures of TTCs containing short spacers show a state incompatible with NusG bridging and NusA binding (TTC-A; previously termed “expressome”). Structures of TTCs containing longer spacers reveal a new state compatible with NusG bridging and NusA binding (TTC-B) and reveal how NusG bridges and NusA binds. We propose that TTC-B mediates NusG- and NusA-dependent transcription-translation coupling.
SummarySince 1967, Rifamaycin (RIF) has been used as a first line antibiotic treatment for tuberculosis (TB), and it remains the cornerstone of current short-term TB treatment. Increased occurrence of RIF-resistant (RIF R ) TB, ~41% of which results from the RpoB S531L mutation in RNA polymerase (RNAP), has become a growing problem worldwide. In this study, we determined the X-ray crystal structures of the Escherichia coli RNAPs containing the most clinically important S531L mutation and two other frequently observed RIF R mutants, RpoB D516V and RpoB H526Y. The structures reveal that the S531L mutation imparts subtle if any structural or functional impact on RNAP in the absence of RIF. However, upon Rifampin (RMP) binding, the S531L mutant exhibits a disordering of the RIF binding interface, which effectively reduces the RIF affinity. In contrast, the H526Y mutation reshapes the RIF binding pocket, generating significant steric conflicts that essentially prevent RIF binding. While the D516V mutant does not exhibit any such gross structural changes, certainly the electrostatic surface of the RIF binding pocket is dramatically changed, likely resulting in the decreased affinity for RIF. Analysis of interactions of RMP with three common RIF R mutant RNAPs suggests that modifications to RMP may recover its efficacy against RIF R TB.
DksA and ppGpp are the central players in the stringent response and mediate a complete reprogramming of the transcriptome. A major component of the response is a reduction in ribosome synthesis, which is accomplished by the synergistic action of DksA and ppGpp bound to RNA polymerase (RNAP) inhibiting transcription of rRNAs. Here, we report the X-ray crystal structures of Escherichia coli RNAP in complex with DksA alone and with ppGpp. The structures show that DksA accesses the template strand at the active site and the downstream DNA binding site of RNAP simultaneously and reveal that binding of the allosteric effector ppGpp reshapes the RNAP-DksA complex. The structural data support a model for transcriptional inhibition in which ppGpp potentiates the destabilization of open complexes by DksA. This work establishes a structural basis for understanding the pleiotropic effects of DksA and ppGpp on transcriptional regulation in proteobacteria.
Rifampin, a semi-synthetic rifamycin, is the cornerstone of current tuberculosis treatment. Among many semi-synthetic rifamycins, benzoxazinorifamycins have great potential for TB treatment due to their superior affinity for wild-type and rifampin-resistant Mycobacterium tuberculosis RNA polymerases, and their reduced hepatic Cyp450 induction activity. In this study, we have determined the crystal structures of the Escherichia coli RNA polymerase complexes with two benzoxazinorifamycins. The ansa-naphthalene moieties of the benzoxazinorifamycins bind in a deep pocket of the β subunit, blocking the path of the RNA transcript. The C3′-tail of benzoxazinorifamycin fits a cavity between the β subunit and σ factor. We propose that, in addition to blocking RNA exit, the benzoxazinorifamycin C3′-tail changes the σ region3.2 loop position, which influences the template DNA at the active site thereby reducing the efficiency of transcription initiation. This study supports expansion of structure–activity relationships of benzoxazinorifamycins inhibition of RNA polymerase toward uncovering superior analogues with development potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.