We have previously described the expression of a functional full-length trkC transcript for neurotrophin-3 (NT-3) receptor in oligodendroglia (OL) cells (Kumar and de Vellis, 1996). To date, the role of NT-3 and its signal transduction cascade in OL remains poorly defined. We report that the NT-3 responsive population of cells in the OL lineage are the progenitor cells and that the addition of NT-3 results in the autophosphorylation of p145TrkC. Furthermore, NT-3-mediated activation of p21ras and mitogen-activated protein kinase (MAPK), extracellular signal-regulated protein kinase2 (ERK2), were also observed in the progenitor OL cells. These protein tyrosine kinase (PTK)-induced responses were sensitive to the presence of K252a, an inhibitor for tyrosine kinase. We have determined that NT-3 promotes progenitor OL cell commitment to enter into S-phase of cell cycle to initiate DNA synthesis, in a manner similar to platelet-derived growth factor-AA (PDGF-AA). NT-3 thus plays a role in cell proliferation when present alone, while augmenting the proliferation capacity of PDGF-AA as indicated by the nuclear binding activity of the transcription factor, E2F-1. Both the initiation and progression of mitotic events were confirmed by the expression of c-myc and cdc2 in the presence of NT-3, PDGF-AA or NT-3 plus PDGF-AA. A cell survival assay examining interleukin 1-beta-converting enzyme (ICE)-like protease-mediated cleavage of poly (ADP-ribose) polymerase (PARP) revealed an increase in OL progenitor cell death in the absence of NT-3 or PDGF-AA. In corroboration with our in vitro studies, in vivo results show an increased expression of the progenitor OL cell marker, glycerol phosphate dehydrogenase (GPDH) within 48 hr following an intracranial injection of NT-3, PDGF-AA, or NT-3 plus PDGF-AA in PN4-5 rats. These novel findings suggest that PDGF-AA potentiates the OL progenitor cell's ability to enter into the S-phase of the cell cycle and that NT-3 can augment this activity. Furthermore, PDGF-AA and NT-3 can block ICE-like protease-mediated PARP fragmentation in progenitor OL cells. These results provide important information which further delineates the signal transduction cascades and the role of NT-3 and PDGF-AA on OL progenitor cells.
We report pleiotropic actions of the interleukin-6 family of cytokines on a rat cerebral cortical oligodendrocyte cell line, Central Glia-4 (CG-4). This is a bipotential oligodendrocyte type-2 astrocyte (O-2A) progenitor cell line that can be manipulated in vitro to become either a type-2 astrocyte or to follow a linear sequence of events into becoming a mature oligodendrocyte. Using Northern and Western analyses in conjunction with immunocytochemistry we have demonstrated that ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), and interleukin-6 (IL-6) cause a transient increase in glial fibrillary acidic protein (GFAP) in oligodendrocyte type-2 astrocyte (O-2A) progenitor cells. At maximal cytokine concentrations, the largest increase in GFAP protein levels were observed for CNTF and LIF; albeit, IL-6 did increase GFAP but the order of magnitude was 6-7 times less. Moreover, in trophic factor deprived medium, CNTF and LIF protected immature (O4+/MBP-) and mature (MBP+) oligodendrocytes from the apoptotic mode of cell death, while IL-6 had no effect in enhancing oligodendrocyte cell survival. Analysis of the cytokine-induced early response genes (ERGs) revealed a strong degree of overlap for CNTF and LIF. The effect of IL-6 was different in the degree to which the ERGs were up-regulated and in their temporal patterns of expression. These findings suggest that ERGs may be important, at least in part, for determining the extent of functional overlap observed within this cytokine family. Our findings clearly demonstrate differential regulation of oligodendrocyte survival and differentiation by the IL-6 family of cytokines.
In recent reports, ciliary neurotrophic factor (CNTF) has been implicated as an injury factor involved in regulating astrogliosis in the CNS. In this study, we used a rat oligodendroglial progenitor cell line that is highly responsive to CNTF to examine CNTF-induced alterations that may play a role in activation of the glial fibrillary acidic protein (GFAP) gene. We determined that CNTF induces the transient translocation of Statlcs/p91 to the nucleus. This nuclear translocation was followed by GFAP promoter activation and an up-regulation of GFAP mRNA and protein. Levels of CNTF-a receptor mRNA, however, were unaffected by addition of the ligand. Transfection studies using an upstream 5'-flanking, 1.9kb rat GFAP promoter linked to a luciferase reporter gene revealed CNTF-induced transcriptional activation within 1 h of ligand exposure. Moreover, serial-deleted constructs identified a distal (-1,857 to -1,546 bp) and a proximal (-384 to -106 bp) region as being important for CNTFinduced GFAP promoter activation. These two regions showed a strong degree of overlap for CNTF-and seruminduced activation of the GFAP gene. Analysis of the two regions revealed several cis-elements that are thought to be involved in GFAP regulation and/or the regulation of other genes by members of the interleukin-6 family of cytokines. Moreover, we are the first to report the presence of several putative CNTF-responsive elements within our identified distal and proximal regions in the GFAP gene promoter. Key Words: Ciliary neurotrophic factor-Ciliary neurotrophic factor-responsive elements-Ciliary neurotrophic factor-a receptor-Glial fibrillary acidic protein -JAK/Stat-Transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.