Objective: to evaluate the features of reparative chondrogenesis and osteogenesis in animal experiments with the implantation of porous poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel into osteochondral defects. Materials and methods. Cylindrical pHEMA implants (5 mm in diameter) were synthesized by radical polymerization. The implants were subjected to light microscopy and mechanical tests to characterize the structure and viscoelastic properties of the material. In experimental group #1, four pHEMA specimens were implanted into formed defects in the distal femoral epiphysis of rabbits. In experimental group #2, allogeneic chondrocytes were applied to the surface of four specimens before implantation. In the control series, four defects were not replaced with implants. Tissue regeneration was investigated by morphological and morphometric methods 30 days after operation. Results. The pHEMA implants were heterogeneous specimens with irregularly shaped pores – up to 30 × 10 μm at the surface and 300 × 120 μm inside. With >10% static compressive stress, the Young’s modulus was 54.7 kPa. For dynamic stress, increased frequency of compression-relaxation cycles from 0.01 Hz to 20.0 Hz led to increased storage modulus from 20 kPa to 38 kPa on average, and increased loss modulus from 2 kPa to 10 kPa. Indicators of semi-quantitative assessment of local inflammatory response to pHEMA implantation had the following values in points: pHEMA, 4.7 ± 0.3; pHEMA with allogeneic chondrocytes, 6.0 ± 1.0; control, 4.3 ± 0.3. The ratio of connective, bone, and cartilage tissues proper in the regenerates had the following respective values: pHEMA, 79%, 20%, 1%; pHEMA with chondrocytes, 82%, 16%, 2%; control, 9%, 74%, 17%. Conclusion. In a short-term experiment, pHEMA implants did not trigger a pronounced inflammatory response in the surrounding tissues and can be classified as biocompatible materials. However, the tested implants had low conductivity with respect to bone and cartilage cells, which can be improved by stabilizing the pore size and increasing the rigidity when synthesizing the material.
The authors of the article consider an avian disease -the respiratory mycoplasmosis of birds, its etiology, pathogenesis, description of clinical and pathoanatomical and pathohistological features of the course of the disease. In our country, despite the fact that there is a developed system against respiratory mycoplasmosis of birds, based on protection of farms from the introduction of infection from the outside, compliance with veterinary and sanitary rules, zoohygienic and technological standards, as well as measures aimed at timely detection of the disease, the problem of the spread of this disease is quite acute. Currently, the topic of respiratory mycoplasmosis does not lose its relevance precisely because of the high percentage of infection in poultry farms. For example, as a result of research conducted by the ARRIAH over the past 5 years, it was revealed that 218 out of 250 poultry farms in Russia were diagnosed with respiratory mycoplasmosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.