The construction of a two-dimensional protein database of the human heart is presented. The database contains information on about 300 abundant proteins of human myocardial tissue, including approximately 40 proteins that were identified by different methods. Each protein was characterized according to several parameters, including molecular weight, isoelectric point, name, partial sequence, subcellular localization, and genetic as well as embryonic changes.
A database of Prostate Cancer Proteomics has been created by using the results of a proteomic study of human prostate carcinoma and benign hyperplasia tissues, and of some human-cultured cell lines (PCP, http://ef.inbi.ras.ru). PCP consists of 7 interrelated modules, each containing four levels of proteomic and biomedical data on the proteins in corresponding tissues or cells. The first data level, onto which each module is based, is a 2DE proteomic reference map where proteins separated by 2D electrophoresis, and subsequently identified by mass-spectrometry, are marked. The results of proteomic experiments form the second data level. The third level contains protein data from published articles and existing databases. The fourth level is formed with direct Internet links to the information on corresponding proteins in the NCBI and UniProt databases. PCP contains data on 359 proteins in total, including 17 potential biomarkers of prostate cancer, particularly AGR2, annexins, S100 proteins, PRO2675, and PRO2044. The database will be useful in a wide range of applications, including studies of molecular mechanisms of the aetiology and pathogenesis of prostate diseases, finding new diagnostic markers, etc.
This review summarizes results of some systemic studies of muscle proteins of humans and some other vertebrates. The studies, started after introduction of two-dimensional gel electrophoresis of O'Farrell, were significantly extended during development of proteomics, a special branch of functional genomics. Special attention is paid to analysis of characteristic features of strategy for practical realization of the systemic approach during three main stages of these studies: pre-genomic, genomic (with organizational registration of proteomics), and post-genomic characterized by active use of structural genomics data. Proteomic technologies play an important role in detection of changes in isoforms of various muscle proteins (myosins, troponins, etc.). These changes possibly reflecting tissue specificity of gene expression may underline functional state of muscle tissues under normal and pathological conditions, and such proteomic analysis is now used in various fields of medicine.
Two polymorphic variants of the ECH1 gene product protein (delta3,5-delta2,4-dienoyl-coenzyme A isomerase) have been revealed by proteomics methods in samples of human striated muscle tissue. These variants are identical in molecular weight (29.7 kD) but different in pI values (6.57 and 6.75) and in amino acid substitution (41 E-->A) confirmed by mass spectrometry. The same type of polymorphism has been detected in samples of different tissues of the same person, so these variants are considered (also based on other data) to be allelic. The rates of these alleles in two representative cohorts of Moscow and Minsk residents are similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.