In this paper we analyse the process of the generation of Tollmien-Schlichting waves in a laminar boundary layer on an aircraft wing in the transonic flow regime. We assume that the boundary layer is exposed to a weak acoustic noise. As it penetrates the boundary layer, the Stokes layer forms on the wing surface. We further assume that the boundary layer encounters a local roughness on the wing surface in the form of a gap, step or hump. The interaction of the unsteady perturbations in the Stokes layer with steady perturbations produced by the wall roughness is shown to lead to the formation of the Tollmien-Schlichting wave behind the roughness. The ability of the flow in the boundary layer to convert 'external perturbations' into instability modes is termed the receptivity of the boundary layer. In this paper we first develop the linear receptivity theory. Assuming the Reynolds number to be large, we use the transonic version of the viscous-inviscid interaction theory that is known to describe the stability of the boundary layer on the lower branch of the neutral curve. The linear receptivity theory holds when the acoustic noise level is weak, and the roughness height is small. In this case we were able to deduce an analytic formula for the amplitude of the generated Tollmien-Schlichting wave. In the second part of the paper we lift the restriction on the roughness height, which allows us to study the flows with local separation regions. A new 'direct' numerical method has been developed for this purpose. We performed the calculations for different values of the Kármán-Guderley parameter, and found that the flow separation leads to a significant enhancement of the receptivity process.
This paper presents a new numerical method to solve the equations of the asymptotic theory of separated flows. A number of measures was taken to ensure fast convergence of the iteration procedure, which is employed to treat the nonlinear terms in the governing equations. Firstly, we selected carefully the set of variables for which the nonlinear finite difference equations were formulated. Secondly, a Newton-Raphson strategy was applied to these equations. Thirdly, the calculations were facilitated by utilizing linear approximation of the boundary-layer equations when calculating the corresponding Jacobi matrix. The performance of the method is illustrated, using as an example, the problem of laminar two-dimensional boundary-layer separation in the flow of an incompressible fluid near a corner point of a rigid body contour. The solution of this problem is non-unique in a certain parameter range where two solution branches are possible.
This paper is concerned with the boundary-layer separation in subsonic and transonic flows caused by a two-dimensional isolated wall roughness. The process of the separation is analysed by means of two approaches: the direct numerical simulation (DNS) of the flow using the Navier-Stokes equations, and the numerical solution of the triple-deck equations. Since the triple-deck theory relies on the assumption that the Reynolds number (Re) is large, we performed the Navier-Stokes calculations at Re = 4 × 10 5 based on the distance of the roughness element from the leading edge of the flat plate. This Re is also relevant for aeronautical applications. Two sets of calculation were conducted with the free-stream Mach number Ma ∞ = 0.5 and Ma ∞ = 0.87. We used different roughness element heights, some of which were large enough to cause a well-developed separation region behind the roughness. We found that the two approaches generally compare well with one another in terms of wall shear stress, longitudinal pressure gradient and detachment/reattachment points of the separation bubbles (when present). The main differences were found in proximity to the centre of the roughness element, where the wall shear stress and longitudinal pressure gradient predicted by the triple-deck theory are noticeably different from those predicted by DNS. In addition, DNS predicts slightly longer separation regions.
In this paper we study the three-dimensional perturbations produced in a hypersonic boundary layer by a small wall roughness. The flow analysis is performed under the assumption that the Reynolds number, $R{e}_{0} = {\rho }_{\infty } {V}_{\infty } L/ {\mu }_{0} $, and Mach number, ${M}_{\infty } = {V}_{\infty } / {a}_{\infty } $, are large, but the hypersonic interaction parameter, $\chi = { M}_{\infty }^{2} R{ e}_{0}^{- 1/ 2} $, is small. Here ${V}_{\infty } $, ${\rho }_{\infty } $ and ${a}_{\infty } $ are the flow velocity, gas density and speed of sound in the free stream, ${\mu }_{0} $ is the dynamic viscosity coefficient at the ‘stagnation temperature’, and $L$ is the characteristic distance the boundary layer develops along the body surface before encountering a roughness. We choose the longitudinal and spanwise dimensions of the roughness to be $O({\chi }^{3/ 4} )$ quantities. In this case the flow field around the roughness may be described in the framework of the hypersonic viscous–inviscid interaction theory, also known as the triple-deck model. Our main interest in this paper is the nonlinear behaviour of the perturbations. We study these by means of numerical solution of the triple-deck equations, for which purpose a modification of the ‘skewed shear’ technique suggested by Smith (United Technologies Research Center Tech. Rep. 83-46, 1983) has been used. The technique requires global iterations to adjust the viscous and inviscid parts of the flow. Convergence of such iterations is known to be a major problem in viscous–inviscid calculations. In order to achieve improved stability of the method, both the momentum equation for the viscous part of the flow, and the equations describing the interaction with the flow outside the boundary layer, are treated implicitly in this study. The calculations confirm the fact that in this sort of flow the perturbations are capable of propagating upstream in the boundary layer, resulting in a perturbation field which surrounds the roughness on all sides. We found that the perturbations decay rather fast with the distance from the roughness everywhere except in the wake behind the roughness. We found that if the height of the roughness is small, then the perturbations also decay in the wake, though much more slowly than outside the wake. However, if the roughness height exceeds some critical value, then two symmetric counter-rotating vortices form in the wake. They appear to support themselves and grow as the distance from the roughness increases.
In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.