Landfills are major sources of contamination due to the presence of harmful bacteria and heavy metals. Electrokinetic-Bioremediation (Ek-Bio) is one of the techniques that can be conducted to remediate contaminated soil. Therefore, the most prominent bacteria from landfill soil will be isolated to determine their optimal conditions for culture and growth. The degradation rate and the effectiveness of selected local bacteria were used to reduce soil contamination. Hence, this enhances microbiological activities to degrade contaminants in soil and reduce the content of heavy metals. The aim of this study is to investigate the ability of isolated bacteria (Lysinibacillus fusiformis) to remove mercury in landfill soil. 5 kg of landfill soil was mixed with deionized water to make it into slurry condition for the purpose of electrokinetic and bioremediation. This remediation technique was conducted for 7 days by using 50 V/m of electrical gradient and Lysinibacillus fusiformis bacteria was applied at the anode reservoir. The slurry landfill soil was located at the middle of the reservoir while distilled water was placed at the cathode of reservoir. After undergoing treatment for 7 days, the mercury analyzer showed that there was a significant reduction of approximately up to 78 % of mercury concentration for the landfill soil. From the results, it is proven that electrokinetic bioremediation technique is able to remove mercury within in a short period of time. Thus, a combination of Lysinibacillus fusiformis and electrokinetic technique has the potential to remove mercury from contaminated soil in Malaysia.
Abstract. Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89 % percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.
Contaminated soil with heavy metals, especially Arsenic (As) has become a major issue worldwide. As is reported to be a metal that affects human health and is related to have caused serious diseases that interrupts the nervous system, blood vessels and kidneys. However, proper treatment techniques such as Stabilization/Solidification (S/S) method can be employed and is capable of controlling these heavy metals from contaminating the soil strata and groundwater resources. This study is to investigate the leachability of Arsenic (As) in S/S method when bagasse ash (BA) is added to remedy contaminated Landfill soil. Cement is added at a proportion of 5%, 10%, 15% and 20% in sample weights without BA while in another sample; the cement replaces BA at a proportion of 2.5%, 5%, 7.5%. and 10%. All samples were allowed to harden and cured at room temperature for 7, 14 and 28 days. The effectiveness of the treatment was assessed by conducting Synthetic Precipitation Leaching Procedure (SPLP). Results indicate that pH and leachability are found to have major influence on metal release. The final pH after leaching tests showed improvements especially samples containing BA. In addition, the concentration of As in the SPLP test after the curing period of 28 days were detected to be below the leachability limit as regulated by WHO's Guidelines for Drinking-water Quality. As a whole, the results obtained from testing showed that sample containing 10% cement with 10% BA is the most effective and is the optimum mix since this proportion succeeded in minimising the leachability of As at total reduction by 100%, In conclusion, partial replacement of cement with BA in the binder system has been successful in reducing the leachability.
Abstract.Residual acidic slopes which are not covered by vegetation greatly increases the risk of soil erosion. In addition, low soil pH can bring numerous problems such as Al and Fe toxicity, land degradation issues and some problems related to vegetation. In this research, a series of electrokinetic bioremediation (EK-Bio) treatments using Bacillus sphaericus, Bacillus subtilis and Pseudomonas putida with a combination of Vetiver grass were performed in the laboratory. Investigations were conducted for 14 days and included the observation of changes in the soil pH and the mobilization of microorganism cells through an electrical gradient of 50 V/m under low pH. Based on the results obtained, this study has successfully proven that the pH of soil increases after going through electrokinetic bioremediation (EK-Bio). The treatment using Bacillus sphaericus increases the pH from 2.95 up to 4.80, followed by Bacillus subtilis with a value of 4.66. Based on the overall performance, Bacillus sphaericus show the highest number of bacterial cells in acidic soil with a value of 6.6 x 102 cfu/g, followed by Bacillus subtilis with a value of 5.7 x 102 cfu/g. In conclusion, Bacillus sphaericus and Bacillus subtilis show high survivability and is suitable to be used in the remediation of acidic soil.
Abstract. Contaminated soils are due to several factors which are caused by the removal of toxins, waste from industrial activities, heavy metals from landfill and organic and inorganic waste from fertilizer used by farmers. This study aims to measure the mobilization of Pseudomonas putida cells through kaolin clay soil using elctrokinetic bioremediation technique. The electrokinetic is used to generate currents into the soil, thus migrating ions to opposite charge of electrodes. The Pseudomonas putida and distilled water was supplied into the anode and cathode reservoirs, respectively. The electrokinetic bioremediation testing was conducted for 5 days duration using 50 V of electric current. The bacterial counts of Pseudomonas sp. are enumerated high at 1.3x10 7 cfu/gww (near the anode), 5.0x10 6 cfu/gww (in the middle) and 8.0x10 6 cfu/gww (near the cathode). These results showed high survivability of Pseudomonas sp. until Day 5. It was demonstrated that the electrokinetic bioremediation technique can be used for Pseudomonas putida transportation in kaolin clay soil throughout the soil specimen and moving in same direction with the electroosmotic flow in electrokinetic bioremediation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.