The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009–December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1 to 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.
Marine boundary layer clouds are modified by processes at different spatial and temporal scales. To isolate the processes governing aerosol–cloud–precipitation interactions, multiday synoptic variability of the environment must be accounted for. Information on the location of low clouds relative to the ridge–trough pattern gives insight into how cloud properties vary as a function of environmental subsidence and stability. The technique of self-organizing maps (SOMs) is employed to objectively classify the 500-hPa geopotential height patterns for 33 years of reanalysis fields (ERA-Interim) into pretrough, trough, posttrough, ridge, and zonal-flow categories. The SOM technique is applied to a region of prevalent marine low cloudiness over the eastern North Atlantic Ocean that is centered on the Azores island chain, the location of a long-term U.S. Department of Energy observation site. The Azores consistently lie in an area of substantial variability in synoptic configuration, thermodynamic environment, and cloud properties. The SOM method was run in two ways to emphasize multiday and seasonal variability separately. Over and near the Azores, there is an east-to-west sloshing back and forth of the western edge of marine low clouds associated with different synoptic states. The different synoptic states also exhibit substantial north–south variability in the position of high clouds. For any given month of the year, there is large year-to-year variability in the occurrence of different synoptic states. Hence, estimating the climatological behavior of clouds from short-term field campaigns has large uncertainties. This SOM approach is a robust method that is broadly applicable to characterizing synoptic regimes for any location.
[1] The hypothesis that areas of high oceanic productivity affect the physical properties of shallow marine clouds via the production of secondary organic aerosols is evaluated using satellite data. The correlation between chlorophyll a concentrations, an indication of oceanic productivity, and low cloud droplet liquid phase effective radius (R e ) is examined for several ocean regions and time periods. While a strong correlation between chlorophyll a and low R e can occur for specific periods in some locations, the correlation is not reproducible in other regions and time periods. The intermittent correlation between high concentrations of chlorophyll a and low R e is a coincidence and is not representative of a dominant, monotonic, causative relation between secondary organic aerosols and marine shallow cloud properties. Citation: Miller, M. A., and S. E. Yuter (2008), Lack of correlation between chlorophyll a and cloud droplet effective radius in shallow marine clouds, Geophys. Res.Lett., 35, L13807,
We document rapid and abrupt clearings of large portions of the subtropical marine low cloud deck that have implications for the global radiation balance and climate sensitivity. Over the southeast Atlantic, large areas of stratocumulus are quickly eroded, yielding partial or complete clearing along sharp transitions hundreds to thousands of kilometers in length that move westward at 8 to 12 meters per second and travel as far as 1000+ kilometers from the African coast. The westward-moving cloudiness reductions have an annual peak in occurrence in the period from April through June. The cloud erosion boundaries reduce cloud at ≈10-kilometer scale in less than 15 minutes, move approximately perpendicular to the mean flow, and are often accompanied by small-scale wave features. Observations suggest that the cloud erosion is caused by atmospheric gravity waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.