We provide a calculation of Pan-STARRS' ability to detect objects similar to the interstellar object 1I/2017 U1 (hereafter 'Oumuamua), including the most detectable approach vectors and the effect of object size on detection efficiency. Using our updated detection cross-section, we infer an interstellar number density of such objects (n IS ≈ 0.2 au −3 ). This translates to a mass density of ρ IS ≈ 4M ⊕ pc −3 which cannot be populated unless every star is contributing. We find that given current models, such a number density cannot arise from the ejection of inner solar system material during planet formation. We note that a stellar system's Oort cloud will be released after a star's main sequence life time and may provide enough material to obtain the observed density. The challenge is that Oort cloud bodies are icy and 'Oumuamua was observed to be dry which necessitates a crust generation mechanism.
We examine the early phase intrinsic (B − V ) 0 color evolution of a dozen Type Ia supernovae discovered within three days of the inferred time of first light (t f irst ) and have (B − V ) 0 color information beginning within 5 days of t f irst . The sample indicates there are two distinct early populations. The first is a population exhibiting blue colors that slowly evolve, and the second population exhibits red colors and evolves more rapidly. We find that the early-blue events are all 1991T/1999aa-like with more luminous slower declining light curves than those exhibiting early-red colors. Placing the first sample on the Branch diagram (i.e., ratio of Si II λλ5972, 6355 pseudo-Equivalent widths) indicates all blue objects are of the Branch Shallow Silicon (SS) spectral type, while all early-red events except for the 2000cx-like SN 2012fr are of the Branch Core-Normal (CN) or CooL (CL) type. A number of potential processes contributing to the early emission are explored, and we find that, in general, the viewing-angle dependance inherent in the companion collision model is inconsistent with all SS objects with early-time observations being blue and exhibiting an excess. We caution that great care must be taken when interpreting early-phase light curves as there may be a variety of physical processes that are possibly at play and significant theoretical work remains to be done.
We present observations of ASASSN-19dj, a nearby tidal disruption event (TDE) discovered in the post-starburst galaxy KUG 0810+227 by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of d ≃ 98 Mpc. We observed ASASSN-19dj from −21 to 392 days relative to peak UV/optical emission using high-cadence, multi-wavelength spectroscopy and photometry. From the ASAS-SN g-band data, we determine that the TDE began to brighten on 2019 February 6.8 and for the first 25 days the rise was consistent with a flux ∝t2 power-law. ASASSN-19dj peaked in the UV/optical on 2019 March 6.5 (MJD = 58548.5) at a bolometric luminosity of L = (6.2 ± 0.2) × 1044ergs−1. Initially remaining roughly constant in X-rays and slowly fading in the UV/optical, the X-ray flux increased by over an order of magnitude ∼225 days after peak, resulting from the expansion of the X-ray emitting region. The late-time X-ray emission is well-fit by a blackbody with an effective radius of ∼1 × 1012cm and a temperature of ∼6 × 105K. The X-ray hardness ratio becomes softer after brightening and then returns to a harder state as the X-rays fade. Analysis of Catalina Real-Time Transient Survey images reveals a nuclear outburst roughly 14.5 years earlier with a smooth decline and a luminosity of LV ≥ 1.4 × 1043 erg s−1, although the nature of the flare is unknown. ASASSN-19dj occurred in the most extreme post-starburst galaxy yet to host a TDE, with Lick HδA = 7.67 ± 0.17 Å.
ABSTRACTgPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project's stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, skyprojected photons, which are then hosted in a publicly available database by the Mikulski Archive at Space Telescope (MAST). This database contains approximately 130 terabytes of data describing approximately 1.1 trillion sky-projected events with a timestamp resolution of five milliseconds. A handful of Python and command line modules serve as a front-end to interact with the database and to generate calibrated light curves and images from the photon-level data at user-defined temporal and spatial scales. The gPhoton software and source code are in active development and publicly available under a permissive license. We describe the motivation, design, and implementation of the calibration pipeline, database, and tools, with emphasis on divergence from prior work, as well as challenges created by the large data volume. We summarize the astrometric and photometric performance of gPhoton relative to the original mission pipeline. For a brief example of short time domain science capabilities enabled by gPhoton, we show new flares from the known M dwarf flare star CR Draconis. The gPhoton software has permanent object identifiers with the ASCL (ascl:1603.004) and DOI (doi:10.17909/T9CC7G). This paper describes the software as of version v1.27.2.
We present the discovery of ASASSN-18ey (MAXI J1820+070), a new black hole low-mass X-ray binary discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). A week after ASAS-SN discovered ASASSN-18ey as an optical transient, it was detected as an X-ray transient by MAXI/GCS. Here, we analyze ASAS-SN and Asteroid Terrestrial-impact Last Alert System (ATLAS) pre-outburst optical light curves, finding evidence of intrinsic variability for several years prior to the outburst. While there was no long-term rise leading to outburst, as has been seen in several other systems, the start of the outburst in the optical preceded that in the X-rays by 7.20 ± 0.97 days. We analyze the spectroscopic evolution of ASASSN-18ey from pre-maximum to > 100 days post-maximum. The spectra of ASASSN-18ey exhibit broad, asymmetric, double-peaked Hα emission. The Bowen blend (λ ≈ 4650Å) in the post-maximum spectra shows highly variable double-peaked profiles, likely arising from irradiation of the companion by the accretion disk, typical of low-mass X-ray binaries. The optical and X-ray luminosities of ASASSN-18ey are consistent with black hole low-mass X-ray binaries, both in outburst and quiescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.