We tested the hypothesis that vasoactive intestinal peptide (VIP) or nitric oxide (NO) is the nonadrenergic noncholinergic (NANC) neurotransmitter in feline trachealis. Isometric tension was measured in trachealis (open or closed tracheal rings) in vitro. Propranolol (10 microM) and atropine (1 microM) were present throughout the experiment, and smooth muscle tone was increased to 60-90% maximal with 5-hydroxytryptamine. We used three methodologies to reduce the relaxation function of VIP, which in turn should reduce NANC-mediated relaxation. 1) The putative VIP antagonist peptide T (10 microM) did not affect VIP concentration-response curves or electrical field stimulation- (EFS) induced NANC responses. 2) Incubation of tissue in specific VIP antiserum (16 h at 4 degrees C) did not reduce EFS-induced NANC relaxations relative to tissue incubated in normal rabbit serum (P > 0.05). On the basis of our passive immunization techniques, it is not possible to absolutely reject VIP as the NANC transmitter. We speculate that nonspecific peptidases present in normal serum and VIP antiserum reduce EFS-induced responses similarly. 3) VIP desensitization, confirmed by a significant rightward shift (P < 0.01) in the VIP concentration-response curve, was achieved by exposing tissues (n = 11) to 1.0 microM VIP for 30 min. Desensitization did not reduce the EFS-induced NANC relaxatory response (P < 0.05) compared with control tissues, suggesting that VIP is not the NANC mediator.(ABSTRACT TRUNCATED AT 250 WORDS)
Although several studies have examined the pulmonary response to muscarinic agonists in the newborn, none has addressed the functional capabilities or "maturity" of vagal innervation to airway smooth muscle in the newborn. The purpose of the present study was to provide a quantitative analysis of the ability of vagal excitatory innervation (encompassing the pre- and postganglionic fibers, airway ganglia, and airway smooth muscle) to alter pulmonary mechanics in the newborn. We measured the changes in pulmonary mechanics elicited by electrical stimulation of the vagus nerves in 20 newborn cats and 18 puppies anesthetized with chloralose urethan. Animals were tracheotomized and ventilated (chest open), and the cervical vagus nerves were sectioned and placed on stimulating electrodes. Animals were placed in a flow plethysmograph, and mean inspiratory resistance (RL,I) and dynamic compliance were measured on a breath-by-breath basis. In each animal RL,I increased, dynamic compliance decreased, and heart rate slowed during 10 s of vagal stimulation at frequencies ranging from 2 to 20 pulses/s. At each stimulus frequency there was a spectrum of responses with respect to the percent change in RL,I. At 15 pulses/s there was a fourfold difference in the RL,I response of the most- and least-sensitive animals. In both species, higher stimulus frequencies caused greater increases in RL,I; at 2 pulses/s RL,I increased on average approximately 40%, compared with approximately 250% at 20 pulses/s. The increase in RL,I was similar in the kitten and puppy at stimulus frequencies of 6 and 15 pulses/s but was less in the kitten at 2 pulses/s (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
The present study was designed to investigate the effects of hypoxia on lung mechanics in the newborn cat and to determine if vagal efferent innervation to the airways is involved in the response. We studied 11 animals, aged 2-7 days, anesthetized with a mixture of chloralose-urethane administered intraperitoneally. A tracheal cannula was inserted just below the larynx and following paralysis (pancuronium bromide), mechanical ventilation was initiated. A pneumothorax was created by a midline thoracotomy and an end-expiratory load was applied to maintain functional residual capacity. Animals were placed in a flow plethysmograph from which measurements of transpulmonary pressure, flow, and volume, mean inspiratory resistance, and dynamic compliance of the lung were calculated. The experimental protocol consisted of a series of 8-min trials, each preceded by a controlled volume history. The hypoxia challenge was composed of 1 min of ventilation with 40% O2, followed by 5 min exposure to 10% O2 and 2 min of recovery. In the majority of animals (7 out of 11), hypoxia had no effect on lung mechanics compared with control trials. Four animals responded to hypoxia with an increase in resistance and a decrease in compliance. Resistance remained elevated throughout the hypoxia with an average maximal increase of 47.2 +/- 22.2% (SD). Dynamic compliance was significantly decreased at the 2nd, 3rd, and 4th min only of hypoxia. Bilateral vagotomy abolished the response in the four animals and hypoxia had no effect on mechanics postvagotomy. Our data suggest that in most cases changes in lung mechanics do not play a causal role in the biphasic ventilatory response to hypoxia seen in the newborn.
Vagal, nonadrenergic inhibitory system (NAIS) innervation to airway smooth muscle has been demonstrated in adults of several species, including humans. However, the functional status of this system in newborns is not known. The NAIS of intestinal smooth muscle has been demonstrated in newborns and develops in parallel with cholinergic innervation (14). Since the lung is derived embryologically from the foregut and cholinergic innervation is operative at birth, we tested the hypothesis that NAIS innervation to the airways is functional in newborn cats. Nineteen cats (2-11 days of age) were anesthetized with chloralose-urethan, and a tracheal cannula was inserted. The chest was opened and the animals were mechanically ventilated. The cervical vagus nerves were separated from the sympathetics, cut, and placed on stimulating electrodes. Mean inspiratory resistance (RL, I) and dynamic compliance (Cdyn, L) were measured on a breath-by-breath basis. Atropine and propranolol were administered (2 mg/kg iv) to block cholinergic and adrenergic pathways, respectively. Subsequently, serotonin infusion was used to increase RL, I approximately 150%. Stimulation (10 s) at frequencies ranging from 2 to 20/s caused a slow-onset (30 s to peak) long-lasting decrease in RL, I and a much smaller increase in Cdyn, L. The magnitude and duration of the bronchodilation increased with stimulus frequency to a plateau at approximately 15/s. At a stimulus frequency of 2/s, RL, I decreased 11 +/- 1.9 vs 36 +/- 4.8% (SE) at 20/s, whereas Cdyn, L increased 2 +/- 1.1 vs. 6 +/- 1.7%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.