Retinal neovascularization and macular edema are central features of diabetic retinopathy, the major cause of blindness in the developed world. Current treatments are limited in their efficacy and are associated with significant adverse effects. Characterization of the molecular and cellular processes involved in vascular growth and permeability has led to the recognition that the angiogenic growth factor and vascular permeability factor vascular endothelial growth factor (VEGF) plays a pivotal role in the retinal microvascular complications of diabetes. Therefore, VEGF represents an exciting target for therapeutic intervention in diabetic retinopathy. This review highlights the current understanding of the mechanisms that regulate VEGF gene expression and mediate its biological effects and how these processes may become altered during diabetes. The cellular and molecular alterations that characterize experimental models of diabetes are considered in relation to the influence of high glucose-mediated oxidative stress on VEGF expression and on the mechanisms of VEGF's actions under hyperglycemic induction. Finally, potential therapeutic strategies for preventing VEGF overexpression or blocking its pathological effects in the diabetic retina are considered.
The purpose of these experiments was to determine the specific role of reactive oxygen species (ROS) in the blood-retinal barrier (BRB) breakdown that characterizes the early stages of vascular dysfunction in diabetes. Based on our data showing that high glucose increases nitric oxide, superoxide, and nitrotyrosine formation in retinal endothelial cells, we hypothesized that excess formation of ROS causes BRB breakdown in diabetes. Because ROS are known to induce increases in expression of the well-known endothelial mitogen and permeability factor vascular endothelial growth factor (VEGF) we also examined their influence on the expression of VEGF and its downstream target urokinase plasminogen activator receptor (uPAR). After 2 weeks of streptozotocin-induced diabetes, analysis of albumin leakage confirmed a prominent breakdown of the BRB. This permeability defect was correlated with significant increases in the formation of nitric oxide, lipid peroxides, and the peroxynitrite biomarker nitrotyrosine as well as with increases in the expression of VEGF and uPAR. Treatment with a nitric oxide synthase inhibitor (N--nitro-L-arginine methyl ester, 50 mg/kg/day) or peroxynitrite scavenger (uric acid, 160 mg/kg/day) blocked the breakdown in the BRB and prevented the increases in formation of lipid peroxides and tyrosine nitration as well as the increases in expression of VEGF and uPAR. Taken together, these data indicate that early diabetes causes breakdown of the BRB by a mechanism involving the action of reactive nitrogen species in promoting expression of VEGF and uPAR.
Because oxidative stress has been strongly implicated in up-regulation of vascular endothelial growth factor (VEGF) expression in ischemic retinopathy, we evaluated the role of NAD(P)H oxidase in causing VEGF overexpression and retinal neovascularization. Dihydroethidium imaging analyses showed increased superoxide formation in areas of retinal neovascularization associated with relative retinal hypoxia in a mouse model for oxygen-induced retinopathy. The effect of hypoxia in stimulating superoxide formation in retinal vascular endothelial cells was confirmed by in vitro chemiluminescence assays. The superoxide formation was blocked by specific inhibitors of NAD(P)H oxidase activity (apocynin, gp91ds-tat) indicating that NAD(P)H oxidase is a major source of superoxide formation. Western blot and immunolocalization analyses showed that retinal ischemia increased expression of the NAD(P)H oxidase catalytic subunit gp91phox, which localized primarily within vascular endothelial cells. Treatment of mice with apocynin blocked ischemia-induced increases in oxidative stress, normalized VEGF expression, and prevented retinal neovascularization. Apocynin and gp91ds-tat also blocked the action of hypoxia in causing increased VEGF expression in vitro, confirming the specific role of NAD(P)H oxidase in hypoxia-induced increases in VEGF expression. In conclusion, NAD ( Retinopathy of prematurity and diabetic retinopathy are leading causes of blindness in infants and adults world wide.
Retinal neovascularization and macular edema are central features of diabetic retinopathy, a major cause of blindness in working age adults. The currently established treatment for diabetic retinopathy targets the vascular pathology by laser photocoagulation. This approach is associated with significant adverse effects due the destruction of neural tissue and is not always effective. Characterization of the molecular and cellular processes involved in vascular growth and hyperpermeability has led to the recognition that the angiogenic growth factor and vascular permeability factor VEGF (vascular endothelial growth factor) play a pivotal role in the retinal microvascular complications of diabetes. Thus, VEGF represents an important target for therapeutic intervention in diabetic retinopathy. Agents that directly inhibit the actions of VEGF and its receptors show considerable promise, but have not proven to be completely effective in blocking pathological angiogenesis. Therefore, a better understanding of the molecular events that control VEGF expression and mediate its downstream actions is important to define more precise therapeutic targets for intervention in diabetic retinopathy. This review highlights the current understanding of the process by which VEGF gene expression is regulated and how VEGF's biological effects are altered during diabetes. In particular, cellular and molecular alterations seen in diabetic models are considered in the context of high glucose-mediated oxidative stress effects on VEGF expression and action. Potential therapeutic strategies for preventing VEGF overexpression or blocking its pathological actions in the diabetic retina are considered.
Vascular endothelial growth factor/vascular permeability factor (VEGF) has been implicated in blood/tissue barrier dysfunctions associated with pathological angiogenesis, but the mechanisms of VEGF-induced permeability increase are poorly understood. Here, the role of VEGF-induced extracellular proteolytic activities on the endothelial cell permeability increase is evaluated. Confluent monolayers of bovine retinal microvascular endothelial (BRE) cells grown on porous membrane were treated with VEGF or urokinase plasminogen activator (uPA), and permeability changes were analyzed. uPA-induced permeability was rapid and sustained, but VEGF-induced permeability showed a biphasic pattern: a rapid and transient phase (1-2 h) followed by delayed and sustained phase (6-24 h). The delayed, but not the early phase of VEGF-induced permeability, was blocked by anti-uPA or anti-uPAR (uPA receptor) antibodies and was accompanied by reduced transendothelial electrical resistance, indicating the paracellular route of permeability. Confocal microscopy and Western blotting showed that VEGF treatment increased free cytosolic beta-catenin, which was followed by beta-catenin nuclear translocation, upregulation of uPAR, and downregulation of occludin. Membrane-bound occludin was released immediately after uPA treatment, but with a long delay after VEGF treatment, suggesting a requirement for uPAR gene expression. In conclusion, VEGF induces a sustained paracellular permeability in capillary endothelial cells that is mediated by activation of the uPA/uPAR system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.