Matrix metalloproteinases (MMPs) are a family of nine or more highly homologous Zn(++)-endopeptidases that collectively cleave most if not all of the constituents of the extracellular matrix. The present review discusses in detail the primary structures and the overlapping yet distinct substrate specificities of MMPs as well as the mode of activation of the unique MMP precursors. The regulation of MMP activity at the transcriptional level and at the extracellular level (precursor activation, inhibition of activated, mature enzymes) is also discussed. A final segment of the review details the current knowledge of the involvement of MMP in specific developmental or pathological conditions, including human periodontal diseases.
Porphyromonas gingivalis increased the collagen degrading ability of HGFs, in part, by increasing MMP activation and by lowering the TIMP-1 protein level, as well as by affecting the mRNA expression of multiple MMPs and TIMPs.
Every year, despite the effectiveness of preventive dentistry and dental health care, 290 million fillings are placed each year in the United States; two-thirds of these involve the replacement of failed restorations. Improvements in the success of restorative treatments may be possible if caries management strategies, selection of restorative materials, and their proper use to avoid post-operative complications were investigated from a biological perspective. Consequently, this review will examine pulp injury and healing reactions to different restorative variables. The application of tissue engineering approaches to restorative dentistry will require the transplantation, replacement, or regeneration of cells, and/or stimulation of mineralized tissue formation. This might solve major dental problems, by remineralizing caries lesions, vaccinating against caries and oral diseases, and restoring injured or replacing lost teeth. However, until these therapies can be introduced clinically, the avoidance of post-operative complications with conventional therapies requires attention to numerous aspects of treatment highlighted in this review.
Vascular endothelial growth factor/vascular permeability factor (VEGF) has been implicated in blood/tissue barrier dysfunctions associated with pathological angiogenesis, but the mechanisms of VEGF-induced permeability increase are poorly understood. Here, the role of VEGF-induced extracellular proteolytic activities on the endothelial cell permeability increase is evaluated. Confluent monolayers of bovine retinal microvascular endothelial (BRE) cells grown on porous membrane were treated with VEGF or urokinase plasminogen activator (uPA), and permeability changes were analyzed. uPA-induced permeability was rapid and sustained, but VEGF-induced permeability showed a biphasic pattern: a rapid and transient phase (1-2 h) followed by delayed and sustained phase (6-24 h). The delayed, but not the early phase of VEGF-induced permeability, was blocked by anti-uPA or anti-uPAR (uPA receptor) antibodies and was accompanied by reduced transendothelial electrical resistance, indicating the paracellular route of permeability. Confocal microscopy and Western blotting showed that VEGF treatment increased free cytosolic beta-catenin, which was followed by beta-catenin nuclear translocation, upregulation of uPAR, and downregulation of occludin. Membrane-bound occludin was released immediately after uPA treatment, but with a long delay after VEGF treatment, suggesting a requirement for uPAR gene expression. In conclusion, VEGF induces a sustained paracellular permeability in capillary endothelial cells that is mediated by activation of the uPA/uPAR system.
A critical outcome of periodontal disease is degradation of the collagenous periodontal ligament that connects teeth to bone in the dental arch. Periodontal diseases occur in response to bacterial colonization of the teeth, but their molecular pathogenesis is still speculative. One family of enzymes, known as the matrix metalloproteinases (MMPs), has been implicated in the degradation of the periodontal ligament. MMPs, which are also suspected to play a role in many other physiologic and pathologic remodeling processes, can be secreted by epithelial cells surrounding the teeth and are found in relative abundance in tissues and fluids near periodontally diseased sites. Since most MMPs are secreted as inactive zymogens which may be activated by limited proteolysis, it has been suggested that proteinases expressed by the infecting periodontal pathogens might activate latent host MMPs to initiate or accelerate degradation of the collegenous periodontal ligament. The aim of this work was to examine interactions between purified host MMPs and bacterial proteinase. In this article, we demonstrate that a proteinase isolated from the periodontopathogen Porphyromonas gingivalis can activate MMP-1, MMP-3, and MMP-9 and can catalyze the superactivation of MMP-1 by MMP-3. Activation of these MMPs is demonstrated to result from initial hydrolysis within their propeptide. Also, for MMP-1 and MMP-9, the P. gingivalis proteinase cleaves the MMP propeptide following a lysine residue at a previously unreported site which, for both MMPs, is one residue NH2-terminal to the known autocatalytic cleavage site. These data describe a mode of virulence for the periodontopathogen Porphyromonas gingivalis that involves activation of host-degradative enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.