The roles of quantum correlations, entanglement, discord, and dissonance needed for performing unambiguous quantum state discrimination assisted by an auxiliary system are studied. In general, this procedure for conclusive recognition between two nonorthogonal states relies on the availability of entanglement and discord. However, we find that there exist special cases for which the procedure can be successfully achieved without entanglement. In particular, we show that the optimal case for discriminating between two nonorthogonal states prepared with equal a priori probabilities does not require entanglement but quantum dissonance only.
We put the pure-state decomposition mathematical property of a mixed state to a physical test. We begin by characterizing all the possible decompositions of a rank-two mixed state by means of the complex overlap between two involved states. The physical test proposes a scheme of quantum state recognition of one of the two linearly independent states which arise from the decomposition. We find that the two states associated with the balanced pure-state decomposition have the smaller overlap modulus and therefore the smallest probability of being discriminated conclusively, while in the nonconclusive scheme they have the highest probability of having an error. In addition, we design an experimental scheme which allows to discriminate conclusively and optimally two nonorthogonal states prepared with different a priori probabilities. Thus, we propose a physical implementation for this linearly independent pure-state decomposition and state discrimination test by using twin photons generated in the process of spontaneous parametric down conversion. The information-state is encoded in one photon polarization state whereas the second single-photon is used for heralded detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.