We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs factories and compact highenergy lepton colliders. The status and time scale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinal and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.
The ability of high temperature superconducting (HTS) conductor to carry high currents at low temperatures makes feasible the development of very high field magnets for uses in accelerators and beam-lines. A specific application of a very high field solenoid is to provide a very small beta region for the final cooling stages for a muon collider. Since ionization cooling in a solenoid acts simultaneously on both transverse planes, any improvement in maximum field has a quadratic consequence in the reduction of the 6-dimensional (6D) beam emittance. This paper describes a conceptual design of a 45 Tesla solenoid based on Bi-2223 HTS tape, where the magnet will be operated at 4.2 K to take advantage of the high current carrying capacity at that temperature. In this design, an outer Nb 3 Sn shell surrounds the HTS solenoid. This paper describes the technical issues associated with building this magnet. In particular it addresses how to mitigate the large Lorentz stresses associated with the high field magnet and how to design the magnet to reduce the compressive end forces. Also this paper discusses the important issue of how to protect this magnet if a quench should occur.
Microscopic images of the surfaces of metallic electrodes used in high-pressure gas-filled 805 MHz RF cavity experiments1 have been used to investigate the mechanism of RF breakdown.2 The images show evidence for melting and boiling in small regions of ~10 micron diameter on tungsten, molybdenum, and beryllium electrode surfaces. In these experiments, the dense hydrogen gas in the cavity prevents electrons or ions from being accelerated to high enough energy to participate in the breakdown process so that the only important variables are the fields and the metallic surfaces. The distributions of breakdown remnants on the electrode surfaces are compared to the maximum surface gradient E predicted by an ANSYS model of the cavity. The local surface density of spark remnants, proportional to the probability of breakdown, shows a strong exponential dependence on the maximum gradient, which is reminiscent of Fowler-Nordheim behavior of electron emission from a cold cathode. New simulation results have shown good agreement with the breakdown behavior of the hydrogen gas in the Paschen region and have suggested improved behavior with the addition of trace dopants such as SF 6.3 Present efforts are to extend the computer model to include electrode breakdown phenomena and to use scanning tunneling microscopy to search for work function differences between the conditioned and unconditioned parts of the electrodes.
Most ionization cooling schemes now under consideration are based on using many large flasks of liquid hydrogen energy absorber. One important example is the proposed Muon Ionization Cooling Experiment (MICE), which has recently been approved to run at the Rutherford Appleton Laboratory (RAL). In the work reported here, a potential muon cooling demonstration experiment based on a continuous liquid energy absorber in a helical cooling channel (HCC) is discussed. The original HCC used a gaseous energy absorber for the engineering advantage of combining the energy absorption and RF energy regeneration in hydrogen-filled RF cavities. In the Muon And Neutrino eXperiment (MANX) that is proposed here, a liquid-filled HCC is used without RF energy regeneration to achieve the largest possible cooling rate in six dimensions. In this case, the magnetic fields of the HCC must diminish as the muons lose momentum as they pass through the liquid energy absorber. The length of the MANX device is determined by the maximum momentum of the muon test beam and the maximum practical field that can be sustained at the magnet coils. We have studied a 3 meter-long HCC example that could be inserted between the MICE spectrometers at RAL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.