The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented. The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented. Disciplines Engineering Physics | Physics Comments This is a manuscript of an article from Nuclear Instruments and Methods in Physics Research
The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides work on the parameters of a 3-4 and 0.5 TeV center-of-mass (COM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (COM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from 1098-4402͞99͞2(8)͞081001(73)$15.00 © 1999 The American Physical Society 081001-1 PRST-AB 2 CHARLES M. ANKENBRANDT et al. 081001 (1999) a heavy-Z target and proceeding through the phase rotation and decay (p ! m n m ) channel, muon cooling, acceleration, storage in a collider ring, and the collider detector. We also present theoretical and experimental R&D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the research and development since the feasibility study of muon colliders presented at the Snowmass '96
The quasielastic reaction v,n--t, -p was studied in an experiment using the BNL 7-foot deuterium bubble chamber exposed to the wide-band neutrino beam with an average energy of 1.6 GeV. A total of 1138 quasielastic events in the momentum-transfer range Q 2 = 0.06 -3.00 ( G~V / C )~ were selected by kinematic fitting and particle identification and were used to extract the axial-vector form factor FA(Q2) from the Q 2 distribution. In the framework of the conventional V -A theory, we find that the dipole parametrization is favored over the monopole. The value of the axial-vector mass MA in the dipole parametrizatibn is 1.07+0.06 GeV, which is in good agreement with both recent neutrino and electroproduction experiments. In addition, the standard assumptions of conserved vector current and no second-class currents are checked.
We determine the top quark mass m t using t t pairs produced in the DO " detector by ͱsϭ1.8 TeV pp collisions in a 125 pb Ϫ1 exposure at the Fermilab Tevatron. We make a two constraint fit to m t in t t→bW ϩ b W Ϫ final states with one W boson decaying to qq and the other to e or . Likelihood fits to the data yield m t (lϩjets)ϭ173.3Ϯ5.6 (stat) Ϯ 5.5 (syst) GeV/c 2 . When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain m t ϭ172.1Ϯ5.2 (stat) Ϯ 4.9 (syst) GeV/c 2 . An alternate analysis, using three constraint fits to fixed top quark masses, gives m t (lϩjets)ϭ176.0 Ϯ7.9 (stat)Ϯ 4.8 (syst) GeV/c 2 , consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented. ͓S0556-2821͑98͒06815-5͔
There have been active efforts in the U.S., Europe, and Japan on the design of a neutrino factory. This type of facility produces intense beams of neutrinos from the decay of muons in a high-energy storage ring. In the U.S., a second detailed feasibility study (FS2) for a neutrino factory was completed in 2001. Since that report was published, new ideas in bunching, cooling, and acceleration of muon beams have been developed. We have incorporated these ideas into a new facility design, which we designate as study 2B (ST2B), that should lead to significant cost savings over the FS2 design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.