Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole-genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms (SNPs), ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7068586C) in the 3’-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed pre-historical migrations from the Near Eastern domestication center to South-and-Southeast Asia, and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation and selection of sheep.
We partially sequenced the mitochondrial D-loop region in 47 individuals from eleven Spanish and foreign goat breeds. Phylogenetic analysis of these sequences allowed us to identify a particular D-loop haplotype shared by individuals from the Palmera, Majorera and Tinerfeña Canarian breeds. Genotyping of 281 goats from 17 different breeds by PCR-HpaII RFLP evidenced that the geographical distribution of this haplotype is restricted to the Canary Islands. This ancestral mitochondrial haplotype might originate in the domestic goat herds brought by the native Canarian inhabitants approximately 3000 years ago. Although we observed other miscellaneous D-loop haplotypes in the Palmera, Majorera and Tinerfeña breeds, any of them allowed us to group individuals from these three populations in a single cluster, a feature that suggests that these haplotypes might have diverse origins. The remarkable degree of phylogeographic structure of the Canary goat breeds with regard to other Spanish and foreign populations might be attributed to the isolation of these breeds in the Canary Islands for approximately 2500 years, without exposure to the migratory movements and commercial trading events that probably affected the genesis of most domestic goat breeds worldwide. The Canarian D-loop haplotype can be efficiently genotyped by using DNA isolated from milk and cheese samples, which paves the way for the future establishment of a Canary breed identity test for these dairy products.
BackgroundThe identification of genes differentially expressed in the skeletal muscle of pigs displaying distinct growth and fatness profiles might contribute to identify the genetic factors that influence the phenotypic variation of such traits. So far, the majority of porcine transcriptomic studies have investigated differences in gene expression at a global scale rather than at the mRNA isoform level. In the current work, we have investigated the differential expression of mRNA isoforms in the gluteus medius (GM) muscle of 52 Duroc HIGH (increased backfat thickness, intramuscular fat and saturated and monounsaturated fatty acids contents) and LOW pigs (opposite phenotype, with an increased polyunsaturated fatty acids content).ResultsOur analysis revealed that 10.9% of genes expressed in the GM muscle generate alternative mRNA isoforms, with an average of 2.9 transcripts per gene. By using two different pipelines, one based on the CLC Genomics Workbench and another one on the STAR, RSEM and DESeq2 softwares, we have identified 10 mRNA isoforms that both pipelines categorize as differentially expressed in HIGH vs LOW pigs (P-value < 0.01 and ±0.6 log2fold-change). Only five mRNA isoforms, produced by the ITGA5, SEMA4D, LITAF, TIMP1 and ANXA2 genes, remain significant after correction for multiple testing (q-value < 0.05 and ±0.6 log2fold-change), being upregulated in HIGH pigs.ConclusionsThe increased levels of specific ITGA5, LITAF, TIMP1 and ANXA2 mRNA isoforms in HIGH pigs is consistent with reports indicating that the overexpression of these four genes is associated with obesity and metabolic disorders in humans. A broader knowledge about the functional attributes of these mRNA variants would be fundamental to elucidate the consequences of transcript diversity on the determinism of porcine phenotypes of economic interest.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4515-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.