The Seebeck coefficient is an important quantity in determining the thermoelectric efficiency of a material. Phosphorene is a two-dimensional material with a puckered structure, which makes its properties anisotropic. In this work, a phosphorene nanodisk (PDisk) with a radius of 3.1 nm connected to two zigzag phosphorene nanoribbons is studied, numerically, by the tight-binding and non-equilibrium Green’s function (NEGF) methods in the presence of transverse and perpendicular electric fields. Our results show that the change in structure from a zigzag ribbon to a disk form creates an energy gap in the structure, such that for a typical nanodisk with a radius of 3.1 nm, the size of the energy gap is 3.88 eV. Besides, with this change, the maximum Seebeck coefficient increases from 1.54 to 2.03 mV/K. Furthermore, we can control the electron transmission and Seebeck coefficients with the help of the electric fields. The numerical results show that with the increase of the electric field, the transmission coefficient decreases and the Seebeck coefficient changes. The effect of a perpendicular electric field on the Seebeck coefficient is weaker than a transverse electric field. For an applied transverse electric field of 0.3 V/nm, the maximum Seebeck coefficient enhances to 2.09 mV/K.
Thermoelectrics as a way to use waste heat, is essential in electronic industries, but its low performance at operational temperatures makes it inappropriate in practical applications. Tailoring graphene can change its properties. In this work, we are interested in studying the transport properties of S-shape graphene structures with the single vacancy (SV) and double vacancy (DV) models. The structures are composed of a chiral part, which is an armchair graphene nanoribbon, and two zigzag graphene ribbons. We investigate the changes in the figure of merit by means of the Seebeck coefficient, electronic conductance, and electronic and phononic conductances with the vacancies in different device sizes. The transport properties of the system are studied by using the non-equilibrium Green’s function method, so that the related Hamiltonians (dynamical matrices) are obtained from the tight-binding (force constant) model. The maximum figure of merit (ZT) obtains for the DVs in all lengths. Physical properties of such a system can be tuned by controlling various parameters such as the location and the type of the defects, and the device size. Our findings show that lengthening the structure can reduce phononic contribution, and single vacancies than double vacancies can better distinguish between electronic thermal conductance behavior and electronic conductance one. Namely, vacancy engineering can significantly increase thermoelectric performance. In the large devices, the SVs can increase the ZT up to 2.5 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.