In the one-dimensional solidification of a binary alloy undergoing shrinkage, there is a relative motion between solid and liquid phases in the mushy zone, leading to the possibility of macrosegregation; thus, the problem constitutes an invaluable benchmark for the testing of numerical codes that model these phenomena. Here, we revisit an earlier obtained solution for this problem, that was posed on a semi-infinite spatial domain and valid for the case of low superheat, with a view to extending it to the more general situation of a finite spatial domain, arbitrarily large superheat and both eutectic and non-eutectic solidification. We find that a similarity solution is available for short times which contains a boundary layer on the liquid side of the mush–liquid interface; this solution is believed to constitute the correct initial condition for the subsequent numerical solution of the full non-similar problem, which is deferred to future work.
A recent asymptotic model for the operation of a vanadium redox flow battery (VRFB) is extended to include the dissociation of sulphuric acid -a bulk chemical reaction that occurs in the battery's porous flow-through electrodes, but which is often omitted from VRFB models. Using asymptotic methods and time-dependent two-dimensional numerical simulations, we show that the charge-discharge curve for the model with the dissociation reaction is almost identical to that for the model without, even though the concentrations of the ionic species in the recirculating tanks, although not the state of charge, are considerably different in the two models. The ability of the asymptotic model to extract both the qualitative and quantitative behaviour of the considerably more time-consuming numerical simulations correctly indicates that it should be possible to add further physical phenomena to the model without incurring significant computational expense.
Although two-dimensional (2D) parabolic integro-differential equations (PIDEs) arise in many physical contexts, there is no generally available software that is able to solve them numerically. To remedy this situation, in this article, we provide a compact implementation for solving 2D PIDEs using the finite element method (FEM) on unstructured grids. Piecewise linear finite element spaces on triangles are used for the space discretization, whereas the time discretization is based on the backward-Euler and the Crank–Nicolson methods. The quadrature rules for discretizing the Volterra integral term are chosen so as to be consistent with the time-stepping schemes; a more efficient version of the implementation that uses a vectorization technique in the assembly process is also presented. The compactness of the approach is demonstrated using the software Matrix Laboratory (MATLAB). The efficiency is demonstrated via a numerical example on an L-shaped domain, for which a comparison is possible against the commercially available finite element software COMSOL Multiphysics. Moreover, further consideration indicates that COMSOL Multiphysics cannot be directly applied to 2D PIDEs containing more complex kernels in the Volterra integral term, whereas our method can. Consequently, the subroutines we present constitute a valuable open and validated resource for solving more general 2D PIDEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.